

safeDpi: a language for
ontrolling mobile

ode

Matthew Hennessy, Julian Rathke and Nobuko

2 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

threads P ;Q; R are similar to pro
esses in the Pi
al
ulus in that they

an re
eive and send values on lo
al
hannels; the types of these
hannels

indi
ate the kind of values whi
h may be transmitted. Lo
ations may be

dynami
ally
reated. For example in

lJ(newlo
 k : K)withC in xpt

1

!hki j xpt

2

!hkiK

a new lo
ation k is
reated at type K, the
ode C is installed at k and

the name of the new lo
ation is exported via the
hannels xpt

i

. Lo
ation

types are similar to re
ord types, their form being

lo
[

1

: C

1

; : : :

n

: C

n

℄

This indi
ates that the
hannels, or resour
es,

i

at types C

i

are available

at the lo
ation. So for example K above
ould be

lo
[ping : rwhPi; �ng : rwhFi℄

indi
ating that the servi
es ping and �ng(er) are supported at k; r indi
ates

the permission to read from a
hannel, while w indi
ates the permission

to write to the
hannel. However the types at whi
h k be
omes known

depends on the types of the exporting
hannels. Suppose for example

these had the types

xpt

1

: whlo
[ping : whPi℄ hP [

safeDpi: a language for
ontrolling mobile
ode 3

by programming the presen
e or absen
e of ports, the site l
an
ontrol

the immigration of
ode.

E�e
tively we have repla
ed un
onstrained spawning of pro
esses at

arbitrary sites by higher-order
ommuni
ation. Moreover these ports,

higher-order
hannels, have types asso
iated with them. The types on

ports are the

4 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

the type

Fdep(y : whTi�k! pr[info : rhTi�here; y : whTi�k℄)

the host
an instantiate the in
oming s
ript with some
hannel lo
ated

at the site k, on whi
h it has write permission, and the running
ode is

restri
ted to writing there, and reading from a lo
al
hannel
alled info.

Note that in both these examples the lo
ation k is built into the s
ript

types. Thus a server with an a

ess port at this type would only

safeDpi: a language for
ontrolling mobile
ode 5

parti
ipate in them. As a simple example
onsider the system

lJ(new

 : C) (xpt!h
i j
?(x)Q)K

in an environment in whi
h the export
hannel xpt
an only send
hannels

with the read
apability. The environment will re
eive
 along xpt but will

not be able to transmit on
. Consequently the potential input a
tions on

 by the pro
ess above will not be possible.

Following [9, 8℄ we repla
e the untyped a
tions in (1) with typed a
tions

of the form

I �M

�

�! I

0

�M

0

where M is the system being observed while I is a
onstraint on the ob-

serving environment representing its knowledge of the system M . A
tions

hange both the pro
esses and the environment in whi
h they are being

observed. This will lead, in the standard manner, to a
oindu
tively de-

�ned, bisimulation-based, relation between systems, whi
h we denote by

I j= M �

bis

N

In our se
ond main result of the paper, we prove that this
oindu
tive rela-

tion
oin
ides with a naturally de�ned
ontextual equivalen
e. One of the

features of our approa
h is the expli
it representation of the information

whi
h the environment
an obtain from systems through testing with
on-

texts. In su
h a highly
onstrained setting as this, this be
omes a genuine

aid in understanding the equivalen
e. This is the topi
 of Se
tion 6.

This report ends, in Se
tion 7, with some
on
lusions and a brief survey

of related work.

2 The language safeDpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of

Dpi from [8℄. It is expli
itly typed, but for expository purposes we defer

the des
ription of types until Se
tion 3. The syntax also presupposes a

general set of
hannel names Names, ranged over by n;m, and a set

of variables Vars ranged over by x; y. Identi�ers, ranged over by u;w,

may
ome from either of these sets. Names is partitioned into two sets,

Lo
s ranged over by k; l; : : : for lo
ations, and Chans ranged over by

a; b;
; : : : for
hannels. There is also a distinguished subset of
hannels

alled ports, and ranged over by p; q; : : : , whi
h are used to handle higher-

order values. Similarly we will sometimes use �; �

0

for variables whi
h will

be instantiated by higher-order values.

The syntax for systems, ranged over by M;N;O, is the same as in

Dpi, allowing the parallel
omposition of lo
ated pro
esses lJP K, whi
h

may share de�ned names, using the
onstru
t (new e : E)�.

6 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

M;N ::= Systems

lJP K Lo
ated Pro
ess

M

safeDpi: a language for
ontrolling mobile
ode 7

often use F to indi
ate an arbitrary s
ript, whereas v will be reserved for

the individual
omponents in a tuple V ; thus it will represent either an

identi�er or a s
ript. Of parti
ular interest to us will be tuples of the form

(~v; F) whi
h will be interpreted as dependent values ; intuitively the s
ript

F depends on the values ~v.

At the risk of being verbose, the syntax has expli
it notations for the

various forms of names whi
h
an be de
lared. In (new

 : C) P a new

lo
al
hannel named
 is de
lared, while (newregn : N) P represents the

generation of a new globally registered name n for
hannels; see [8℄ for mo-

tivation. When a new lo
ation is de
lared, in (newlo
 k : K)withQ in P ,

its de
laration type K
an only involve
hannel names whi
h have been

registered. This
onstru
t generates the new lo
ation k, sets the
ode Q

running there, and in parallel
ontinues with the exe
ution of P . This

spe
i�

onstru
t for new lo
ations is required sin
e
ode may only be

exe
uted at a lo
ation on
e entry has been be gained via a port; so here

Q represents the
ode with whi
h the lo
ation is initialised.

The main novelty in safeDpi, over Dpi, is the
onstru
t

goto

p

k:F

Intuitively this means: migrate to lo
ation k via the port p with the
ode

F . Our type system will ensure that F is in fa
t a s
ript with a type

appropriate to the port p; moreover entry will only be gained if at the

lo
ation k the port p is
urrently a
tive.

The various binding stru
tures, for names and variables, gives rise

to the standard notions of free and bound o

urren
es of identi�ers, �-

onversion, and (
apture-avoiding) substitution of values for identi�ers

in terms, Pfj

v

=ujg; this is extended to patterns, Pfj

V

=Xjg in the standard

manner. We omit the details but three points are worth emphasising.

The �rst is that many su
h substitutions may give rise to badly formed

pro
ess terms but our typing system will ensure that this will never o

ur

in well-typed terms. The se
ond is that identi�ers may o

ur in our types

and therefore we require a notion of substitution into types; this will be

explained in Se
tion 3. Finally terms will be identi�ed up to �-equivalen
e,

and bound identi�ers will always be
hosen to be distin
t, and di�erent

from any free identi�ers.

In the sequel we use system to refer to a
losed system term, that is

a system term whi
h
ontain no free o

urren
es of variables; similarly a

pro
ess means a
losed pro
ess term.

8 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Redu
tion Semanti
s: This is given in terms of a binary relation be-

tween systems

M �! N

and is a mild generalisation of that given in [8, 10℄ for Dpi.

Definition 2.1 (Contextual relations). A relation R over systems

is said to be
ontextual if it preserves all the system
onstru
tors of the

language; that is M RN implies

� M jORN jO and O jM RO jN

safeDpi: a language for
ontrolling mobile
ode 9

(r-
omm)

kJ
!hV iK j kJ
?(X : T)P K �! kJPfj

V

=XjgK

(r-split)

kJP jQK �! kJP K j kJQK

(r-n:
reate)

kJ(newregn : N) P K �! (new n : N) kJP K

(r-move)

kJgoto

p

l:F K �! lJp!hF iK

(r-l:
reate)

kJ(newlo
 l : L)withC in P K �! (new l : L)(kJP K j lJCK)

(r-
:
reate)

kJ(new

 : C) P K �! (new
 : C�k) kJP K

(r-unwind)

kJP K jM �!M

0

kJ�P K jM �! kJ�P K jM

0

(r-eq)

kJif u = u then P else QK �! kJP K

(r-beta)

kJ(� (ex :

e

T
): P)(ev)K �! kJPfj

ev

=exjgK

(r-neq)

kJif u = vthen P else QK �! kJ Q

safeDpi: a language for
ontrolling mobile
ode 11

at this type then it
an transmit values of at most type T

w

along it

and re
eive from it values whi
h have at least type T

r

. In the formal

des
ription of types there will be a subtyping
onstraint, that T

w

must

be a subtype of T

r

, explained in detail in [19℄. When the transmit

and re
eive types
oin
ide we abbreviate this type by rwhTi. We also

allow the types whT

w

i and rhT

r

i, whi
h only allow the transmission,

re
eption respe
tively, of values.

Global resour
e name types, ranged over by N: These take the form

r
hCi, where C is a
hannel type. Intuitively these are the types of

names whi
h are available to be used in the de
laration of new lo
a-

tions. They allow an individual resour
e name, su
h as print, to be

used in multiple lo
ations, resulting in a form of dynami
 typing.

Lo
ation types, ranged over by K; L: The standard form for these is

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄

where C

i

are
hannel types, and the identi�ers u

i

are distin
t. An

agent possessing a lo
ation name k with this type may use the
han-

nels/resour
es u

i

lo
ated there at the types C

i

; from the point of view

of the agent, k is a site whi
h o�ers the servi
es u

1

; : : : u

n

at the
orre-

sponding types. In the formal de�nition we will require ea
h u

i

to be

already de
lared as a global resour
e name. If n is zero then the agent

knows of the existen
e of k but has no right to use resour
es there. We

abbreviate this trivial type from lo
[℄ to lo
. We also identify lo
ation

types up to re-orderings.

Pro
ess types, ranged over by �. The simplest pro
ess type is pro
,

whi
h
an be assigned to any well-typed pro
ess. More �ne-grained

pro
ess types take the form

pr[u

1

: C

1

�w

1

; : : : u

n

: C

n

�w

n

℄

where the pairs (u

i

; w

i

) are assumed to be distin
t. A pro
ess of this

type
an use at most the resour
e names u

i

at the lo
ation w

i

with

their spe
i�ed types C

i

; these types determine the lo
ations at whi
h

the
hannels u

i

may be used.

S
ript types, ranged over by S: The general form here is

Fdep(~x :

~

T!�)

S
ripts of this type require parameters (~v) of type (

~

T); when these are

supplied the resulting pro
ess will be of type �fj

~v

=~xjg. In other words the

type of the resulting pro
ess may in general depend on the parameters.

In these types we allow � to
ontain o

urren
es of a spe
ial lo
ation

safeDpi: a

14 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

� x : hT with ~y :

~

Ei. This represents a pa
kage, whi
h will be used to

handle existential types. Intuitively this de�nes the asso
iation x : T

but the type T may depend on the auxiliary asso
iations ~y :

~

E.

Lists of assumptions are
reated dynami
ally during type
he
king, typ-

i
ally by augmenting a
urrent environment with new assumptions on

bound variables. It is
onvenient to introdu
e a parti
ular notation for

this operation:

Definition 3.2 (Forming environments). Let fV : Tg be a list of

type assumptions de�ned by

� fv : C�wg = v : C�w

� fx : Sg = x : S

� fv : lo
[u

1

: C

1

; : : : u

n

: C

n

℄g = v : lo
; u

1

: C

1

�v; : : : u

n

: C

n

�v

� f(~y; x) : Tdep(~y :

~

E)Tg = fy

1

: E

1

g : : : ; fy

n

: E

n

g; fx : Tg

� fx : Edep(~y :

~

E)Tg = x : hT with fy

1

: E

1

g : : : ; fy

n

: E

n

gi �

Of
ourse there a lots of other possibilities for V and T but only those

mentioned give rise to lists of assumptions. Moreover even those given

may give rise to lists whi
h are not
onsistent. For example we should

not be able to introdu
e an assumption u : lo
 if u is already designated

a
hannel, or introdu
e u : C�w unless w is known to be a lo
ation. Sin
e

type expressions also use identi�ers, before introdu
ing this assumption

we would need to ensure that C is a properly formed type; for example it

should only use identi�ers whi
h are already known. In order to des
ribe

the set of valid environments we introdu
e judgements of the form

� ` env

The inferen
e rules are straightforward and
onsequently are relegated to

the appendix, in Figure 10. We also relegate to there the de�nition of

subtyping judgements, of the form

� ` T <: U;

given in Figure 11. Again the rules are straightforward, and mostly inher-

ited from [8℄. However it is worth noting that pro
ess types are ordered

di�erently than lo
ation types. For example we have

� ` pr[u

1

: C

1

�k℄ <: pr[u

1

: C

1

�k; u

2

: C

2

�l℄

but

� ` lo
[u

1

: C

1

; u

2

: C

2

℄ <: lo
[u

1

: C

1

℄

safeDpi: a language for
ontrolling mobile
ode 15

assuming, of
ourse, that the various types used, C

i

;C

j

are well-de�ned

relative to �.

These rules have been formulated so that they
an also be used to say

what is a valid type relative to a type expression.

Definition 3.3 (Valid types). We say the type expression T is a valid

type relative to �, written � ` T : ty, whenever we
an derive the judge-

ment � ` T <: T. �

Types
an be viewed intuitively as sets of
apabilities and unioning these

sets
orresponds to performing ameet operation with respe
t to subtyping.

This we now explain. Let (D;�) be a preorder. We say a subset E � D

is lower-bounded by d 2 D if d � e for every e in E. Upper bounds are

de�ned in a similar manner.

Definition 3.4 (partial meets and joins). We say that the preorder

(D;�) has partial meets if every pair of elements in D whi
h has a lower

bound also has a greatest lower bound. This means that for every pair of

elements d

1

; d

2

in D whi
h has some lower bound, that is there is some

element in d 2 D su
h that d � d

1

; d � d

2

, there is a parti
ular lower

bound, denoted d

1

u d

2

whi
h is less then or equal to every lower bound.

The upper bound of pairs of elements, d

1

t d

2

is de�ned in an analogous

manner. �

Let Types

�

denote the set of all type expressions T su
h that � ` T : ty.

Theorem 3.5. For every �, the set Types

�

, ordered by <:, has partial

meets and partial joins.

Proof: See Proposition A.2 in Appendix A �

Intuitively the existen
e of T u U means that T and U are
ompatible, in

that they allow
ompatible
apabilities on values at these types. Moreover

the type TuU may be viewed as a unioning of the
apabilities allowed by

the individual types.

It is worth pointing out that with our type expressions set Types

�

turns out to be not only a preorder but also a partial order. However this

would no longer be the
ase if we allowed re
ursive types; nevertheless

with this extension our results would still apply. Note also that be
ause

of the existen
e of the top type >, useful in Se
tion 6, joins of types are

always guaranteed to exist.

3.3 Type Inferen
e

We are now ready to des
ribe the type inferen
e system for ensuring that

systems are well-typed.

16 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(ty-gnew)

�; n : r
hCi ` M

� ` (new n : r
hCi)M

(ty-
new)

�;
 : C�k ` M

� ` (new
 : C�k)Mty- M

(ty

18 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

types we need to invent a new kind of value h~v; vi; these do not o

ur in

the language safeDpi, and are only used by the type inferen
e system;

intuitively h~v; vi is a pa
kage
onsisting of the value v together with the

witnesses ~v, whi
h provide eviden
e (for the type inferen
e system) that

v has it's required type. The rule (ty-EDep), whi
h might also be
alled

(ty-Pa
k), allows us to
onstru
t su
h values. It is similar to the rule for

dependent tuples. The pa
kage h~v; vi
an be assigned the type Edep(~x :

~

E)T

provided we
an establish that v

i

an be assigned the type v

i

: E

i

fj

~v

=~xjg

and v the type Tfj

~v

=~xjg. Dependent tuples
an be de
onstru
ted and their

omponents a

essed in the standard manner; see the fourth
lause of

De�nition 3.2. However the
orresponding de
onstru
tion for existential

types only allows a

ess to the �nal
omponent, and not the witnesses;

(ty-Unpa
k) allows the value, rather than the witnesses, to be extra
ted

at the appropriate type from the pa
kage. Similarly (ty-Elookup) only

allows knowledge of the value, and not the witnesses, to be dedu
ed from

an existential assumption.

In Figure 7 the rules for name generation, (ty-new
han),(ty-newlo
)

and (ty-newreg), are simple adaptations of the
orresponding rules at

the system level; note that in (ty-newlo
) we are guaranteed that the

new name k does not o

ur in the type �, be
ause rules at(-newlo
) ty

safeDpi: a language for
ontrolling mobile
ode 19

20 Matthew

safeDpi:

22 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

tantly the type at

safeDpi: a language for
ontrolling mobile
ode 23

whi
h in turn follows from

�; fx : L

p

g `

r

goto

in

x:ping!hvi : pro

This is a
onsequen
e of applying the typing rule (ty-go) to the judgement

�; fx : L

p

g `

x

in!hping!hvii : pro
 (6)

The type environment �; fx : L

p

g takes the form

�; x : lo
; in : whthunki�x; ping : whV

p

i�x

Therefore (6) follows from an appli
ation of the simple form of the output

rule (ty-out), provided we
an establish

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

� (): ping!hvi : thunk;

that is

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

ping!hvi : pro

Finally this requires the judgement

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

v : V

p

(7)

Note that this
he
king of v is
arried out relative to the variable

lo
ation x; so the type V

p

needs to be some global type, whose meaning is

independent of the
urrent lo
ation. This
ould be a base type su
h as int,

although we will see more interesting examples, su
h as return
hannels,

later.

4.3 Site prote
tion

A simple infrastru
ture for a typi
al site
ould take the form

hJin?(� : I) � run � j SK

The on-site
ode S
ould provide various servi
es for in
oming agents,

repeatedly a

epted at the input port in. In a relaxed
omputing environ-

ment the type I
ould simply be thunk indi
ating that any well-typed
ode

will be allowed to immigrate. In the sequel we will always assume that

when the type of the port in is not dis
ussed it has this liberal type.

However
onstraints
an be imposed on in
oming
ode by only pub-

li
ising ports whi
h have asso
iated with them more restri
tive guardian

types. In su
h
ases it is important that read
apabilities on the these

ports be retained by the host. This point will be ignored in the ensuring

dis
ussion, whi
h instead
on
entrates on the forms the guardian types

an take.

Consider a system
onsisting of a server and
lient, de�ned below,

running in parallel.

24 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Server: sJreq?(� : S) run � j � news!hs
andaliK

Client:
Jgoto

req

s:news?(x) goto

in

: report!hxi

j in?(� : R) run � j report?(ygoto

safeDpi: a language for
ontrolling mobile
ode 25

server, S. By dethunking we get the requirement

� `

s

news?(x) goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

This is established via an appli
ation of the rule (ty-in). The �rst premise

is immediate sin
e we assume � `

s

news : rwhstringi. Moreover the se
ond

amounts to

�; x : string `

s

goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

be
ause the value being re
eived is a string; that is pr

h

[x : string�s℄ is the

trivial pro
ess type pr[℄.

The signi�
ant step in establishing this se
ond premise is to
he
k that

the
ode returning to the
lient satis�es its guardian type R:

�; x : string `

in!h report!hxii : pr[news : rhstringi�s; in : whRi�
℄ (9)

However this is straightforward sin
e R is the liberal guardian thunk. It

follows by an appli
ation of the output rule (ty-out) in Figure 7. But it

is important to note that in the appli
ation the third premise is va
uous,

as pr

h

[� (): report!hxi : pro
℄ is the trivial type pr[℄.

The
urrent type R = thunk leaves the
lient site open to abuse but it

is easy to
he
k that the above reasoning is still valid if the guardians are

hanged to

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whRi�
℄

Here the guardian for the
lient only allows in agents whi
h write to the

lo
al port report; note that this
hange requires that the guardian at the

server site also uses this more restri
tive type in its annotation for the

port in at
.

One
an
he
k that with these new restri
tive guardians the system is

still well-typed. The only extra work required is in providing a proof for

the judgement (9) above, ensuring that the
ode returning to the
lient

satis�es the more demanding guardian. By an appli
ation of (ty-go) and

(ty-out) this redu
es to the judgement

�; x : string `

� (): report!hxi : th[report : whstringi�
℄

whi
h is a straightforward
onsequen
e of (ty-out).

It might be tempting to de�ne the guardians by

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whthunki�
℄

Here both server and
lient prote
t their own resour
es but the server is

uninterested in what happens at the
lient site, by allowing
ode with

26 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

arbitrary
apabilities on the
lient port in. However there is an intuitive

in
onsisten
y here. The
lient has read
apability at its port, at the re-

stri
tive type R, while somehow the server has obtained a more liberal

write
apability there, namely thunk.

In fa
t the system
an not be typed with these revised guardians. In

parti
ular

� 6` sJreq?(� : S) run �K

Any derivation of this judgement would require the judgement

�; � : S `

s

run �

whi
h in turn would require

� ` S : ty

or more formally

� ` S <: S

But as we will see this
an not be inferred; that is S is not a valid type,

relative to �.

To see why let us suppose, for simpli
ity, that the port in has been

de
lared at the site
 with a type of the form rwhR;Wi for some type W.

One
onstraint in the type formation rules, (see (ty-
han) in Figure 11)

is that the write
apabilities on a
hannel are always a subtype the read

apabilities; in our setting this means that � ` W <: R. Our rules also

ensure that � `

in : whT

w

i implies � ` T

w

<: W and
onsequently

� ` T

w

<: R.

However the stru
ture of R ensures that �

0

` thunk <: R for no �

0

, from

whi
hthe` aty

<

safeDpi: a language for
ontrolling mobile
ode 29

lient server from (8) above:

Server: sJreq?(� with y : S

d

) run � j � news!hs
andaliK

Client:
J(new
 report)

goto

req

s:news?(x) goto

in

: report!hxi with
 j

in?(� : R) run � j report?(y) : : :K

(12)

with the types

R : thunk

S

d

: Tdep(y : I) th[news : rhstringi�s; in : whRi�y℄

I : lo
[in : whRi℄

Here the

30 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

whi
h in turn requires the premise

�; y : lo
; in : whthunki�y ` th

y

: ty (13)

safeDpi: a language for
ontrolling mobile
ode 31

the usual pro
ess to the server but now a

ompanies it with the triple

(
; report; in)

The
ode for the server is the same ex
ept that a

ompanying the

in
oming thread it expe
ts three values. Its guardian type S

d

however is

hanged to

S

d

: Tdep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[news : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

Here, on
e more, this guardian type does not mention any
lient names,

but it allows
lients to employ mu
h more restri
tive guardian types at

their own sites. We leave the reader to
he
k that this revised system
an

still be type
he
ked.

4.6 Existential pro
ess types

The use of dependent s
ript types, as in the previous subse
tion, has

ertain disadvantages from the point of view of the
lients. For example

in

32 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

output rule for existential types; see (ty-outE) in Figure 7, whi
h has

already been explained in Se
tion 3.3.

Let us now reformulate (14) above using existential types:

Server: sJreq?(� : S

e

) run � j � news!hs
andaliK

Client:
J(new
 report)

(new
 in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi j

in?(� : R) run � j report?(y) : : :K

(16)

Here the guardian type S

e

is

Edep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

safeDpi: a language for
ontrolling mobile
ode 33

This is ne
essary in order to ensure that run
an be applied to �. Here we

use an appli
ation of (ty-Elookup) from Figure 6 to obtain

�; f� : S

e

g `

s

� : th

y

One
an also establish, using the subtyping rules,

�; f� : S

e

g ` th

y

<: pro

and therefore by (ty-subtyping) from Figure 6 we obtain the required

judgement (18) above.

Now let us examine the
lient. Here the
entral point is to ensure that

the goto

req

s: : : :
ommand is well-typed, whi
h amounts to establishing

the judgement:

�; report : rwhstringi�
 `

s

req!hnews?(x) goto

in

: report!hxii : pro

Here the relevant rule is (judgement:

�;

safeDpi: a language for
ontrolling mobile
ode 35

(F foo), running at s, to behave in a

ordan
e with the type

pr[foo : rhstringi�s; in : whthunki�
℄

This is indeed the
ase as F
an be assigned the parameterised type

Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�
℄) (21)

To see this let � be as des
ribed on 24. Then, using a simple variation on

the inferen
e des
ribed there, we
an infer

�; y : rhstringi�s `

s

y?(x) goto

in

: report!hxi : pr[y : rhstringi�here; in :

36 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

whi
h is in turn an elaboration of the example we have just
onsidered:

Server: sJreq?(� : S

se

) (� news) j � news!hs
andaliK

Client:
J(new
 report)

(new
 in : rwhRi)

goto

req

s:F j

in?(� : R) stringi: y?(x newsthe server, and at

the same time the server isawareof reply me
hanismspla
e at

the
lient; indeed these are generated dynami
ally by the
lient and used

to the s
ript F tobesentto server. One showthissystemiswell-typedif we let the guardian type for the
lient an to

be

R : th[report : wstringi�
℄

S

se

Fdep(w : r S

w

e

is the existential type

Edep(y : lo
; z : wstringi�y; x : wth[z : wstringi�y℄i�y)

th[w : rth[z : wstringi�y℄i�y℄

5 Subje
t Redu
tion

Many of the expe
ted properties
anderived our typesystem.Tostate su

in
tly it will useful to use

�

w

v : T or a pro
ess judgement � our attention judgements in whi
h � no

o

urren
es of thespe
ial symbol herethus they will only o

ur as partof types(~x :

~

T!�) note in appli
ations

(ty-abs) from 7 they are eliminated.

Proposition 5.r (Sanity Che
ks).

� � env .

� � � : ty

Proof: The �rst is proved by indu
tion on the of � ` on that of theinferen
e of � �. It required

by the base
ase (ty-stop) while in
ases (ty-out), (ty-outE

safeDpi: a language for
ontrolling mobile
ode

38 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

An interesting
onsequen
e of this result is that whenever the
onditions

of the proposition hold C

1

u C

2

is guaranteed to exist. This is spelled out

in detail in Proposition A.2 in the Appendix.

As usual the proof of Subje
t Redu
tion relies on the fa
t that, in a

suitable sense, type inferen
e is preserved under substitutions. We require

two su
h results, one for standard values, and one for the existential values

used in type inferen
e.

Lemma 5.4 (Substitution). Suppose � `

w

1

v : T with x not in �.

Then �; x : (T)�w

1

;� `

w

2

J : T implies �;�fj

v

=xjg `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

Proof: First note that the entry x : (T)�w

1

an only take one of three

forms, a
hannel registration, x : r
hDi, a lo
ation de
laration x : lo
, a

hannel de
laration, x : C�w

0

or a s
ript de
laration x : S. The proof is

by indu
tion on the inferen
e of �; x : (T)�w

1

;� `

w

2

J : T, whi
h
an

use the rules from Figure 6 or Figure 7. For
onvenien
e we use �

0

to

denote �fj

v

=xjg for the various synta
ti

ategories �. Also we use �

e

as

an abbreviation for the environment �; x : (T)�w

1

;�. First let us look at

some
ases from Figure 6.

� Suppose (ty-lookup) is used. So �

e

`

w

2

u : E be
ause

(i) �

e

` env

(ii) �

e

has the form �

1

; u : (E)�w

2

; : : : .

The substitution result for well-de�ned environments, Proposition A.5

in the appendix, ensures that

(i') �;�

0

` env

To obtain the
orresponding

(ii') �;�

0

has the form �

1

; u

0

: (E

0

)�w

0

2

; : : :

we perform a
ase analysis on where u : (E)�w

2

o

urs in �

e

; with

(i') and (ii') an appli
ation of the rule (ty-lookup) gives the required

� `

w

0

2

u

0

: E

0

.

If it o

urs in � then (ii') is immediate sin
e the substitutions have

no e�e
t. If it o

urs in � then u

0

: (E

0

)�w

0

2

o

urs in �

0

and so

(ii') holds. Finally u : (E)�w

2

ould
oin
ide with x : (T)�w

1

. There

are now a number of
ases, depending on the form of (T)�w

1

. As

an example suppose it is C�w

1

. Then w

1

and w

2

oin
ide and x
an

not appear in C; w

1

. Therefore the hypothesis � `

w

1

v : C gives the

required result, �;�

0

`

w

2

v : C, by Weakening.

� The
ase (ty-Elookup) is very similar, although there are only two

40 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

the latter
ontains : : : k : lo
; v : (C

0

1

u C

0

2

)�k; : : : . Nevertheless it will

always be the
ase that

�;�

0

; (fk : Kg)

0

� �;�

0

; (fk : K

0

g)

and therefore by Weakening (i'),(ii') and (iii') apply also to the latter.

So (ty-lo
)
an be applied to these to obtain the required

�;�

0

`

w

0

2

(newlo
 k : K

0

)withC

0

in P

0

: �

0

� Suppose (ty-in) is used. So � `

w

2

u?(X : U)P : � be
ause

(i) �

e

` pr[u : rhUi�w

2

℄ <: �

(ii) �

e

; fX : (U)�w

2

g `

w

2

P : (� t pr

h

[X : (U)�w

2

℄)

Applying the substitution result for subtyping, Proposition A.5 we get

(i') �;�

0

` pr[u

0

: rhU

0

i�w

0

2

℄ <: �

0

sin
e (pr[u : rhUi�w

2

℄)

0

is pr[u

0

: rhU

0

i�w

0

2

℄. Applying indu
tion to (ii)

gives

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (� t pr

h

[X : (U)�w

2

℄)

0

Now substitutions distribute over t (see Proposition A.3 in the Ap-

pendix), and also over the
hannel extra
tion fun
tion (See Proposi-

tion A.4). So this may be rewritten

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (�

0

t pr

h

[X : (U

0

)�w

0

2

℄)

as x is guaranteed not to be in the pattern X. As in the previous
ase,

we
an show that

�;�

0

; (fX : (U)�w

2

g)

0

� �;�

0

; fX : (U

0

)�w

0

2

g

although be
ause of lo
ation types they may not be identi
al. Never-

theless this is suÆ
ient to be able to apply (ty-in) to (i'),(ii') to obtain

the required �;�

0

`

w

0

2

u?(X : U

0

)P

0

: � �

This substitution result
an be generalised to arbitrary patterns, but

we only require it in a spe
ial
ase:

Corollary 5.5. Let X be

safeDpi: a language for
ontrolling mobile
ode 41

So �; fX : (K)�wg is �; x : lo
; u

1

: C

1

�x; : : : ; u

n

: C

n

�x whi
h
an be

written as

�; x : lo
; (u

1

: C

1

�x; : : : ; u

n

: C

n

�x)

So applying the previous lemma we obtain

�; u

1

: C

1

�v; : : : u

n

: C

n

�v `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

But � `

w

2

v : K means that � `

v

u

i

: C

i

for ea
h i. So we see that

� � �; u

1

: C

1

�v; : : : u

n

: C

n

�v from whi
h the required

� `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

follows. �

The
orresponding result for existential types uses di�erent substitu-

tions into pro
esses and types. The
ru
ial property of existential values

is that the use of their witnesses is very limited:

Proposition 5.6. Suppose �; y : hT with ~x :

~

Ei;�

0

`

w

J : T. Then

x

i

62 fv(J) and x

i

does not o

ur in �

0

; w.

Proof: By indu
tion on the inferen
e. Intuitively the result follows from

the fa
t that the only information available, via (ty-Elookup), from the

entry y : hT with ~x :

~

Ei is that y has the type T; no information on x

i

is available. The proof relies on the
orresponding result for well-de�ned

environments and subtyping, Proposition A.6 �

This result provides the
entral property underlying the substitution result

for existential values.

Lemma 5.7 (ESubstitution). Suppose � `

w

1

h~v; vi : Edep(~x :

~

E)T.

Then �; y : h(T)�w

1

with ~x :

~

Ei;� `

w

2

J : T; w

2

: lo
 implies �;�fj

v

=yjg `

w

2

fj

v

=yjg

Jfj

v

=yjg : Tfj

~v

=~xjg

Proof: The proof follows the lines of that of Lemma 5.4, with frequent

appli
ations of the previous proposition, Proposition 5.6, to ensure that

only the substitution of v for x is applied to pro
ess terms and names. As

usual
ertain
ases depends on the
orresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.

�

Theorem 5.8 (Subje
t Redu
tion).

Suppose � ` M . Then M �! N implies � ` N:

Proof: It is a question of examining ea
h of the rules in Figure 2 in

turn. Note that (r-str) requires that typing is preserved

42 Matthew Hennessy, Julian Rathke and

safeDpi: a language for
ontrolling mobile
ode 43

� (~u; F) a tuple in whi
h the last value F , a s
ript, may depend on the

�rst-order values (~u). These have a type of the form Tdep(~x :

~

A) S.

� F a s
ript, the �nal
omponent of an existential value h~u; F i with a

type of the form Edep(~x :

~

A) S.

Simple s
ripts may be simulated via the empty dependent type Tdep() S,

as
an simple �rst-order values, via the type Tdep()A. Our results extend

to the full language, although the proofs require the development of more

ompli
ated notations.

6.1 A
ontextual equivalen
e

We intend to use a
ontext based equivalen
e in whi
h systems are asked

to be deemed equivalent in all reasonable safeDpi
ontexts. What is

perhaps not so
lear here is the notion of reasonable
ontext. In previous

work on mobile
al
uli, [9, 8,

safeDpi: a language for
ontrolling mobile
ode 45

Thus, in representing the environment's knowledge of the system we must

also represent the information about whi
h lo
ations are available for di-

re
t testing. This motivates the following de�nition.

Definition 6.3 (Knowledge stru
tures). A knowledge stru
ture is

a pair (�; T), where

� � is a type environment su
h that � ` env

� T is a subset of Lo
s su
h that if k 2 T then k : lo
 2 �

We use I to range over knowledge stru
tures and write I

�

and I

T

to refer

to the respe
tive
omponents of the stru
ture. We sometimes refer to

writerect

46 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(4) I; fn : Eg j=M RN implies I j= (new n : E)M R (new n : E)N �

In the �rst
ondition we are assured that k is a fresh lo
ation; therefore

this form of weakening allows the environment to
reate for itself fresh

lo
ations at whi
h it may deploy
ode. The se
ond form of weakening,

in (2), allows it to invent new names with whi
h to program pro
esses.

Condition (3) allows it to pla
e well-typed
ode at sites to whi
h it has

a

ess rights, while (4) is the standard me
hanism for handling names

whi
h are private to the systems being investigated.

Barb Preservation: For any given lo
ation k and any given
hannel a

su
h that k 2 I

T

and I

�

`

k

a : rwhuniti we write I ` M +

barb

a�k if there

exists some M

0

su
h that M�!

�

M

0

j kJa!hiK. We say that a knowledge-

indexed relation is barb preserving if I j= M R N and I ` M +

barb

a�k

implies I ` N +

barb

a�k.

Definition 6.6 (Redu
tion barbed
ongruen
e). We let �

xt

be

the largest knowledge-indexed relation over systems whi
h is

� pointwise symmetri
 (that is I j=M �

xt

N implies I j= N �

xt

N)

� redu
tion
losed

�
ontextual

� barb preserving �

We take redu
tion barbed
ongruen
e to be our tou
hstone equivalen
e

for safeDpi as it is based on simple observable behaviour respe
ted in all

ontexts. The de�nition above is stated relative to
hoi
e of the knowledge

stru
ture I. We should point out however that, for any given systems

M;N and type environment � su
h that � ` M and � ` N then there

is a
anoni
al
hoi
e of knowledge stru
ture I, namely, (�; T

�

) where we

let T

�

= f k j k : lo
 2 � g. This
hoi
e of knowledge stru
ture gives

rise to what we feel to be a natural and intuitive notion of equivalen
e for

well-typed safeDpi systems.

Of
ourse, the quanti�
ation over all
ontexts makes reasoning about

the equivalen
e virtually intra
table. However it is
ommon pra
ti
e, [19,

21, 1, 9, 8℄, to provide some sort of model or alternative
hara
terisation

in terms of labelled transition systems, whi
h makes the behaviour of

systems mu
h more a

essible. In parti
ular if the a
tions in the labelled

transition system are suÆ
iently simple this
an lead to automati
, or

semi-automati
 veri�
ation methods.

In the next se
tion we show that this
ontextual equivalen
e for safeDpi

an be
hara
terised in a similar manner, as a bisimulation equivalen
e

over a suitably de�ned labelled transition system.

safeDpi: a language for
ontrolling mobile
ode 47

6.2 A bisimulation equivalen
e

We �rst dis
uss the labels, or a
tions, to be used in the labelled transition

system. They are given by the following grammar:

� ::= � j (~n :

~

E)go

p

k:F

safeDpi: a language for
ontrolling mobile
ode 49

(m-re
eive)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I � kJa?(X : U)P K)

k:a:V ?

����! (I � kJPfj

V

=XjgK)

(m-deliver)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I �M)

k:a:V ?

����!
(I �M j kJa!hV iK)

(m-send:val)

k 2 I

T

Ta �rst-order type

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (T)�kg ` env

(I � kJa!heuiK)

k:a:eu!

���! (I; feu : (T)�kg� kJstopK)

(m-send:s
ript)

k 2 I

T

T of the form Edep(~x :

~

T)S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

`

k

G : T! pro

(I � kJa!hF iK)

k:a:G!

����! (I � kJG (F)K)

(m-send:dep:s
ript)

k 2 I

T

T of the form Tdep(~x :

~

E) S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (

~

E)�kg ` env

I

�

`

k

G : T! pro

(I � kJa!h(eu; F)iK)

k:a:(eu;G)!

������! (I; feu :

e

(E)�kg� kJG (eu; F)K)

(m-goto)

k 62 I

T

I

�

`

k

p!hV i : pro

(I �M)

go

p

k:V

����! (I �M j kJp!hV iK)

Figure

Figure

Figure

50 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(m-

safeDpi: a language for
ontrolling mobile
ode 51

The inferen
e rules for the a
tion judgements (23) are given in Fig-

ures 9, and again they are informed by the
orresponding rules in Fig-

ure 10 of [8℄. Here we abuse notation a little by writing (m)� to mean

(~n :

~

E)(m; ~m)�

0

whenever � is (~n :

~

E)(~m)�

0

. Note that, unlike in [8℄, we

have two weakening rules; the new one, (m-Tweak), allows the environ-

ment to invent a new lo
ation k at whi
h it has a

ess rights.

As a sanity
he
k on these judgements we give a pre
ise des
ription of

the possible forms the a
tions
an take; to aid readability we will use G

to represent a s
ript furnished by the environment and F to represent one

furnished by the system:

Proposition 6.7. Suppose that I � M is a
on�guration from whi
h

(I �M)

�

�! (I

0

�N), where � is not � . Then � takes one of the following

forms:

First-order: input (~n :

~

E)k:a:(~u)?, where (~n) � (~u), or output (~m)k:a:(~u)!,

where (~m) � (~u)

S
ript: input (~n :

~

E)k:a:F ?, where (~n) � fn(F), or output (~n :

~

E)k:a:G!

where (~n) � fn(G)

Dependent s
ript: input (~n :

~

E)k:a:(~u; F)?, where (~n) � (~u) [fn(F),

or output (~n :

~

E)(~m)k:a:(~u;G)!, where (~n) � fn(G) and (~m) � (~u)

Ayn
hronous-goto: (~n :

~

E)go

p

k:F , where (~n) � fn(F).

Proof: By indu
tion on the inferen
e of (I �M)

�

�! (I

0

�N):

52 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

an be inferred from Figure 8 and Figure 9. The standard de�nition of

bisimulation therefore gives a
o-indu
tive relation over
on�gurations:

Definition 6.9 (Bisimulations). We say the binary relation between

on�gurations R is a typed bisimulation if C RD implies

� C

�

�! C

0

implies D

�̂

=)D

0

for D

0

su
h that C

0

RD

0

� D

�

�!D

0

implies C

�̂

=)C

0

for C

0

su
h that C

0

RD

0

where

�̂

=) is the standard notation, meaning

�

�!

�

�

�!

�

�!

�

for � not equal

to � and

�

�!

�

otherwise.

We write I j= M �

bis

N whenever there exists some bisimulation R

su
h that (I �M)R (I �N). �

With this notation, that is by viewing the knowledge-stru
ture I as a pa-

rameter, we
onstrue �

bis

to be a knowledge-indexed relation over systems.

This enables us to
ompare it dire
tly with the tou
hstone behavioural

equivalen
e �

xt

. The main te
hni
al property we require of �

bis

is given

in the following result:

Proposition 6.10. The knowledge-indexed relaton �

bis

is
ontextual.

Proof: This follows similar lines to the equivalent statement in [8℄. For

this reason we only show that �

bis

is preserved by parallel
omposition

here. Let R be de�ned by

(I � (new ~n :

~

T

1

)M j

Y

i2I

k

i

JP

i

K)R (I � (new ~n :

~

T

2

)N j

Y

i2I

k

i

JP

i

K)

if and only if there exists some I

0

�

, (

~

T) and T

0

su
h that

I

0

�

<: I

�

(

~

T

1

) <: (

~

T) and (

~

T

2

) <: (

~

T)

T

0

� ~n

I

0

�

` k

i

JP

i

K and k

i

2 I

T

+ T

0

for ea
h i 2 I

(I

0

�

; I

T

+ T

0

); f~n : Tg j=M �

bis

N

We aim to show that R is a bisimulation from whi
h the result follows

immediately. For the purposes of this exposition we will assume that ~n is

empty and that the indexing set I is a singleton. We take any

(I �M j kJP K)R (I �N j kJP K)

so we have some I

0

�

su
h that

(I

0

�

; I

T

) j=M �

bis

N (24)

with I

0

�

` kJP K and k 2 I

T

. We suppose that (I�M jkJP K)

�

�! (I

0

�M

0

)

and now must show that there is a
orresponding mat
hing move from

safeDpi: a language for
ontrolling mobile

54 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

with l; k 2 I

00

T

also. Therefore, by de�nition of R again, we see that

I j= (new l : L)(M j lJCK j kJQK)R (new l : L)(N j lJCK j kJQK) (25)

We know that (I �N j kJP K)

�

�! (I � (new l : L)(N j lJCK j kJQK)) and

that M

0

�M jM

00

� (new l : L)(M j lJCK j kJQK), so by (25), we have

I j= M

0

R (new l : L)(N j lJCK j kJQK)

and our mat
hing transition as required.

Alternatively, suppose that kJP K �! M

00

is derived from an in-

stan
e of (r-move). We then have

P = goto p:lF and M

00

� lJp!hF iK

for some p; l; F . It is important to note here that the lo
ation l may

not be
ontained in I

T

and this prevents us from immediately using

the de�nition of relation R to
laim that

I j= M j lJp!hF iKRN j

safeDpi: a language for
ontrolling mobile
ode 55

where U

0

<: U. Call the target knowledge stru
ture I

000

. This tells us,

by (24) that there exists a mat
hing transition

(I

0

�

; I

T

)�N

(~m)k:a:(~m

0

;G)!

=========) (I

safeDpi: a language for
ontrolling mobile
ode 57

if I j= M �

xt

N . We outline the proof that R de�nes a bisimulation,

from whi
h the result follows.

To this end suppose (I � M)

�

�! (I

0

� M

0

), where I j= M R N .

We must �nd a mat
hing move (I � N)

�

=) (I

0

� N

0

), su
h that I

0

j=

M

0

R N

0

. For the purposes of this sket
h we assume for simpli
ity that

I = I

0

. By De�nability, Proposition 6.12. We know that there exists a

system C

I

�

, typeable from I

�

; fk

0

: K

0

g, whi
h satis�es the
onditions of

ontextuality for

58 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

The
ase in whi
h (I�M)

�

�!(I

0

�M

0

) for I

0

not equal to I is slightly

more
ompli
ated and is dealt with using an Extrusion Lemma similar to

that found in [6, 9, 8℄. �

This provides an alternative
hara
terisation of redu
tion barbed
on-

gruen
e whi
h models the nature of knowledge a
quisition possible by

testing with highly
onstrained mobile
ode in an expli
it way.

7 Con
lusion

We have developed a sophisti
ated type system for
ontrolling the be-

haviour of mobile
ode in distributed systems, and demonstrated that,

at least in prin
iple,
oindu
tive proof prin
iples
an still be applied to

investigate their behaviour.

The use of types in this manner
ould be
onsidered as a parti
ular

ase of the general approa
h of proof-
arrying
ode, [18℄ and typed assembly

language (TAL) [17℄. Here hosts would publish their safety poli
ies in

terms of a type or logi
al proposition and
ode wishing to enter would

have to arrive with a proof, whi
h a type
he
ker or proof
he
ker
an use

to verify that it satis�es the published poli
y. Indeed we intend to use

the types of the
urrent paper in this manner, by extending the work in

[20℄. The work of [18℄ and [17℄ has inspired mu
h further resear
h into

the use of type systems in higher-level languages for resour
e a

ess and

usage monitoring, [23℄, [12℄, for example. However the emphasis in these

papers is on dynami
s and
ounting of resour
e usage rather than using

sophisti
ated types to spe
ify �ne-grained a

ess
ontrol.

There has been mu
h work on modelling mobility and lo
ations using

parti
ular pro
ess
al
uli. Perhaps the
al
ulus
losest to safeDpi is the

Seal Cal
ulus, [5℄. Seals are hierar
hi
ally organised
omputational sites

in whi
h inter-seal
ommuni
ation, whi
h is
hannel-based, is only allowed

among siblings or between parents and siblings. Seals may also be
om-

muni
ated, rather like the
ommuni
ation of higher-order pro
esses along

ports in safeDpi; indeed in some sense it is more general as the seal being

transmitted may be
omputationally a
tive. However the
ommuni
ation

of seals is more
ompli
ated, as it involves agreement between three par-

ti
ipants, the sender, the re
eiver, and the seal being transmitted. Seals

are also typed using interfa
es, similar to our �ne-grained pro
ess types,

�. But these only re
ord the input
apabilities a seal o�ers to its parents,

and in order to preserve interfa
es under redu
tion the transmission of

input
hannel
apabilities is forbidden in the language. This is a severe

restri
tion, at least in general distributed
omputing, if not in the more fo-

used appli
ation area of seals. For example the generation of new servers

safeDpi: a language for
ontrolling mobile
ode 59

requires the the transmission of input
apabilities. We believe that our

dependent and existential types
an also be applied to the Seal Cal
ulus,

to obtain a more general notion of interfa
e, whi
h will still be preserved

by redu
tion.

The M-
al
ulus, [22℄, a higher-order extension of the distributed join

al
ulus, is also
losely related, at least
on
eptually, to safeDpi. Here,

not only are lo
ations hierar
hi
ally organised, but are programmable, in

the sense that entry and exit poli
ies for ea
h lo
ation
an be expli
itly

programmed. In addition it has an interesting operator,
alled passivation,

whi
h
an freeze the
ontents of a site into a value. However their type

system is not related to one we have developed for safeDpi; the latter

addresses a

ess
ontrol issues for migrating
ode whereas the former is

on
erned with uni
ity of lo
ations; in a higher-order language with a

passivation operator it is important to ensure that ea
h lo
ality has a

unique name. Thus the type system for the M-Cal
ulus draws on that

presented in [24℄, where uni
ity of the lo
ation of
hannel names was

addressed, rather than that of [25℄, whi
h developed �ne-grained a

ess

ontrol types for pro
esses.

Type systems have also been used to expli
itly
ontrol mobility in

distributed
al
uli, most notably in variants of the Ambient
al
ulus of

Cardelli and Gordon [3℄. In parti
ular, [2℄, [16℄ use subtyping to
on-

trol movement of mobile pro
esses in a hierar
hi
ally distributed system

by introdu
ing expli
it types to express permission to migrate. A simi-

lar te
hnique was used for Dpi in [10℄, [8℄. In
ontrast, here we
ontrol

mobility only indire
tly through types. Code is always permitted to mi-

grate provided it has a

ess to a suitable port at the target lo
ation. But

by restri
ting the use of
hannels in the types this
onsequently restri
ts

migration. Indeed, we de
ouple permission to migrate from the lo
ation

name itself, a�ording more
exibility in the
ontrol of migration.

The
oindu
tive
hara
terisation presented here makes use of higher-

order a
tions in the sense that, to intera
t with a system willing to send

a s
ript V , the environment must supply a re
eiving s
ript G to whi
h V

will be applied. A similar approa
h is used in the
hara
terisation theo-

rems for various forms of ambients in [7℄ and [15℄. Higher-order a
tions

are also used in the bisimulation equivalen
e presented in [4℄ for the Seal

al
ulus. However, there the three way nature of higher-order
ommuni-

ation leads to a proliferation of su
h a
tions, some of whi
h
an not be

simulated by seal
ontexts; see Se
tion 4.4 of [5℄ for examples. As a re-

sult the bisimulation equivalen
e is more dis
riminating than the natural

ontextual equivalen
e for seals.

Su
h higher-order bisimulations do not dire
tly result in automati

safeDpi:

62 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

ously, using the rules in Figure 10 and Figure 11. The former are a mild

extension of the
orresponding rules in Figure 6 of [8℄ to a

ommodate

s
ript and dependent types and rely on a predi
ate � `

lookup

u : T, whi
h

simply looks up the type asso
iated with u in �. The latter is an extension

of the well-known subtyping rules of types in the Pi
al
ulus, [21℄, and

Dpi, [10, 8℄; the rules for pro
ess types are similar to those used in [25℄.

The judgements also
he
k that the identi�ers used in T; U are a
tually

de
lared appropriately in �.

Proposition A.1 (Sanity Che
ks).

� � ` T <: U implies � ` env

� � ` T <: U implies � ` T : ty and � ` U : ty

� � ` T <: U, � ` U <: R implies � ` T <: R

� �; u : T ` env implies � ` env and � ` T : ty

Proof: By rule indu
tion. �

Meets and Joins: The partial operators u; t on type expressions are

de�ned by extending the de�nitions used in [10, 8℄ for
hannel and lo
ation

types. We take them to be the least re
exive and symmetri
 operators

whi
h satisfy a series of rules for
ombining together various kinds of type

expressions. Those governing
hannel expressions are, as in [10℄:

� rhT

1

i u rhT

2

i = rhT

1

u T

2

i, rhT

1

i t rhT

2

i = rhT

1

t T

2

i

� whT

1

i u whT

2

i = whT

1

t T

2

i, whT

1

i t whT

2

i = whT

1

u T

2

i

� rhT

r

i u whT

w

i = rwhT

r

;T

w

i

� rwhT

r

;T

w

i u rhT

0

r

i = rwhT

r

u T

0

r

;T

w

i,

rwhT

r

;T

w

i t rhT

0

r

i = rwhT

r

t T

0

r

;T

w

i,

� rwhT

r

;T

w

i u whT

0

w

i = rwhT

r

;T

w

t T

0

w

i,

rwhT

r

;T

w

i t rhT

0

w

i = rwhT

r

;T

w

u T

0

w

i,

To express the rules for lo
ation types we take advantage of the fa
t that

the ordering of their
omponents is immaterial:

� lo
[u

1

: C

0

1

℄u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

uC

1

); : : : ; u

n

: C

n

℄,

lo
[u

1

: C

0

1

℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

t C

1

)℄

� if u does not o

ur in fu

1

; : : : ; u

n

g then

lo
[u : C℄ u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u : C; u

1

: C

1

; : : : ; u

n

: C

n

℄,

lo
[u : C℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[℄

� lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ u K = lo
[u

1

: C

1

℄ u (: : : (lo
[u

n

: C

n

℄ u K) : : :),

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄tK = (lo
[u

1

: C

1

℄tK)u : : :u (lo
[u

n

: C

n

℄tK)

safeDpi: a language for
ontrolling mobile
ode 63

We use a similar approa
h to de�ning the operations on pro
ess types,

where we use GC as an arbitrary type of the form C�w. However the

pro
ess type
onstru
tor is
ontravariant, whereas the lo
ation
onstru
tor

is
ovariant.

� pr[u

1

: C

0

1

�w

1

℄ u pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ = pr[u

1

: (C

0

1

t C

1

)�w

1

℄,

pr[u

1

: C

0

1

�w

1

℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ =

pr[u

1

: (C

0

1

u C

1

)�w

1

; : : : ; u

n

: GC

n

℄

� if u�w does not o

ur in fu

1

�w

1

; : : : ; u

n

�w

n

g then

pr[u : C�w℄ u pr[u

1

: C

1

�w; : : : ; u

n

: C

n

�w

n

℄ = pr[℄,

pr[u : C�w℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄ =

pr[u : C�w; u

1

: C

1

�w

1

: : : ; u

n

: C

n

�w℄

� pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ u � =

(pr[u

1

: GC

1

℄ u �) t : : : t (pr[u

n

: GC

n

℄ u �),

pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ t � = pr[u

1

: GC

1

℄ t (: : : (u

n

: GC

n

t �) : : :)

� pro
 u � = �, pro
 t � = pro

For the various forms of dependent types, the rules are straightforward:

� Fdep(~x :

~

T!�) u Fdep(~x :

~

T!�

0

) = Fdep(~x :

~

T!(� u �

0

)),

Fdep(~x :

~

T!�) t Fdep(~x :

~

T!�

0

) = Tdep(~x :

~

T) (� t �

0

)

� Tdep(~x :

~

T)T u Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T u T

0

),

Tdep(~x :

~

T)T t Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T t T

0

)

� Edep(~x :

~

T)T u Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T u T

0

),

Edep(~x :

~

T)T t Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T t T

0

)

For the remaining kinds of type expressions we merely extend the de�ni-

tions homomorphi
ally:

� r
hCi u r
hC

0

i = r
hC u C

0

i, r
hCi t r
hC

0

i = r
hC t C

0

i

� T�w u T

0

�w = (T u T

0

)�w

Proposition A.2.

� If there exists some type expression T su
h that � ` T <: T

1

and

� ` T <: T

2

then T

1

u T

2

is well-de�ned

� When T

1

uT

2

is well-de�ned, � ` T

1

uT

2

<: T

i

and � ` T <: T

1

uT

2

,

for any type expression T su
h that � ` T <: T

1

and � ` T <: T

2

.

� If there exists some type expression T su
h that � ` T

1

<: T and

� ` T

2

<: T then T

1

t T

2

is well-de�ned

� When T

1

tT

2

is well-de�ned, � ` T

i

<: T

1

tT

2

, and � ` T

1

tT

2

<: T,

for any type expression T su
h that � ` T

1

<: T and � ` T

2

<: T.

64 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Proof: The �rst and third statements are proved by indu
tion on the

derivations of � ` T

i

<: T and � ` T <: T

i

respe
tively. The se
ond and

fourth are by indu
tion on the
onstru
tion of T

1

uT

2

; T

1

tT

2

respe
tively.

�

Note that be
ause of the top type > the premise of the third statement is

always true; so T

1

t T

2

always exists, although in many
ases it will be

the uninformative type >.

Substitutions: Free identi�ers may o

ur in type expressions and there-

fore we need to de�ne Tfj

v

=ujg for an arbitrary type expression T; this is

then used as part of the de�nition of substitution into pro
ess terms. The

de�nition of Tfj

v

=ujg is by indu
tion on the stru
ture of T. The only inter-

esting
ases are lo
ation and pro
ess types, where the de�nition needs to

ensure that the entries remain unique:

� lo
[u

0

: C℄fj

v

=ujg = lo
[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� lo
[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg =

(lo
[u

1

: C

1

℄fj

v

=ujg) u : : : u (lo
[u

n

: C

n

℄fj

v

=ujg)

� pr[ù T

safeDpi: a language for
ontrolling mobile
ode 65

66 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Referen
es

[1℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing
al
uli without mat
h-

ing. In Pro
. 13th LICS Conf. IEEE Computer So
iety Press, 1998.

[2℄ L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In Pro
.

IFIP TCS 2000, volume 1872 of Le
ture Notes in Computer S
ien
e. Springer-

Verlag, 2000.

[3℄ L. Cardelli and A. Gordon. Mobile ambients. In Pro
. FoSSaCS '98, LNCS.

Springer-Verlag, 1998.

[4℄ G. Castagna and F. Zappa Nardelli. The Seal
al
ulus revisited: Contextual equiv-

alen
es and bisimilarity. In Pro
eedings of FSTTCS, Le
ture Notes in Computer

S
ien
e, 2002.

[5℄ Giuseppe Castagna, Jan Vitek, and Fran
es
o Zappa. The Seal
al
ulus. 2003.
es

safeDpi: a language for
ontrolling mobile
ode 67

[18℄ George C. Ne
ula. Proof-
arrying
ode. In Conferen
e Re
ord of POPL '97:

The 24th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming

Languages, pages 106{119, Paris, Fran
e, jan 1997.

[19℄ B. Pier
e and D. Sangiorgi. Behavioral equivalen
e in the polymorphi
 pi-
al
ulus.

Journal of the ACM, 47(3):531{584, 2000.

[20℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstra
t). In Conferen
e Re
ord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,

pages 93{104, 1999. To appear in the Journal of Automated Reasoning.

[21℄ Davide Sangiorgi and David Walker. The �-
al
ulus. Cambridge University Press,

2001.

[22℄ A. S
hmitt. and J.-B. Stefani. The M-
al
ulus: A higher-order distributed pro
ess

al
ulus. In POPL2003, January 2003.

[23℄ David Walker. A type system for expressive se
urity properties. In the twenty sev-

enth ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Lan-

guages, Boston, pages 254{267, 2000.

[24℄ Nobuko Yoshida and Matthew Hennessy. Subtyping and lo
ality in distributed

higher order pro
esses. In Pro
. CONCUR, volume 1664 of Le
ture notes in
om-

puter s
ien
e. Springer-Verlag, 1999.

[25℄ Nobuko Yoshida and Matthew Hennessy. Assigning types to pro
esses. Informa-

tion and Computation, 172:82{120, 2002.

