

SAFEDPI: a language for controlling mobile
code

MATTHEW HENNESSY, JULIAN RATHKE and NOBUKO

2 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

threads P ,(Q, R are similar to processes in the PICALCULUS in that they
can receive and send values on local channels; the types of these channels
indicate the kind of values which may be transmitted. Locations may be
dynamically created. For example in

[[(newlock : K)with C' in xpt, (k) | xpty!(k)]

a new location k is created at type K, the code C is installed at k& and
the name of the new location is exported via the channels xpt,;. Location
types are similar to record types, their form being

loc[er : Cq,y..cp 2 Gy

This indicates that the channels, or resources, ¢; at types C; are available
at the location. So for example K above could be

loc[ping : rw(P), fing : rw(F)]

indicating that the services ping and fing(er) are supported at k; r indicates
the permission to read from a channel, while w indicates the permission
to write to the channel. However the types at which k& becomes known
depends on the types of the exporting channels. Suppose for example
these had the types

xpty : w(loc[ping : w(P)] (P |

SAFEDPI: a language for montrolling mobile sode 3

by programming the presence or absence of ports, the site [can control
the immigration of code.

Effectively we have replaced unconstrained spawning of processes at
arbitrary sites by higher-order communication. Moreover these ports,
higher-order channels, have types associated with them. The types on
ports are the

4 Matthew Hennessy, Julian Bathke and Nobuko Yoshida
the type

Fdep(y : W(T)ak — prlinfo : r(T)ahere, y : w(T)ak])

the host can instantiate the incoming script with some channel located
at the site k, on which it has write permission, and the running code is
restricted to writing there, and reading from a local channel called info.
Note that in both these examples the location k is built into the script
types. Thus a server with an access port at this type would only

SAFEDPI: a language for montrolling mobile sode 5

participate in them. As a simple example consider the system

[[(newc e : C) (xptl{c) |c?(x) Q)]
in an environment in which the export channel xpt can only send channels
with the read capability. The environment will receive ¢ along xpt but will
not be able to transmit on ¢. Consequently the potential input actions on
¢ by the process above will not be possible.
Following [9, 8] we replace the untyped actions in (1) with typed actions
of the form

I>M-ET >M

where M is the system being observed while Z is a constraint on the ob-
serving environment representing its knowledge of the system M. Actions
change both the processes and the environment in which they are being
observed. This will lead, in the standard manner, to a coinductively de-
fined, bisimulation-based, relation between systems, which we denote by

I‘: M%bisN

In our second main result of the paper, we prove that this coinductive rela-
tion coincides with a naturally defined contextual equivalence. One of the
features of our approach is the explicit representation of the information
which the environment can obtain from systems through testing with con-
texts. In such a highly constrained setting as this, this becomes a genuine
aid in understanding the equivalence. This is the topic of Section 6.

This report ends, in Section 7, with some conclusions and a brief survey
of related work.

2 The language SAFEDPI

FYNTAX: The syntax, given in Figure 1, is a slight extension of that of
Drr1 from [8]. It is explicitly typed, but for expository purposes we defer
the description of types until Section 3. The syntax also presupposes a
general set of channel names NAMES, ranged over by n,m, and a set
of variables VARS ranged over by z,y. Identifiers, ranged over by u,w,
may come from either of these sets. NAMES is partitioned into two sets,
Locs ranged over by k,I[,... for locations, and CHANS ranged over by
a,b,c,... for channels. There is also a distinguished subset of channels
called ports, and ranged over by p, q, ..., which are used to handle higher-
order values. Similarly we will sometimes use &, £’ for variables which will
be instantiated by higher-order values.

The syntax for systems, ranged over by M, N, O, is the same as in
Dri, allowing the parallel composition of located processes I[P], which
may share defined names, using the construct (newe : E) —.

Matthew Hennessy, Julian Bathke and Nobuko Yoshida

M,N := Systems
I[P] Located Process
M

SAFEDPI: a language for montrolling mobile sode 7

often use F' to indicate an arbitrary script, whereas v will be reserved for
the individual components in a tuple V'; thus it will represent either an
identifier or a script. Of particular interest to us will be tuples of the form
(0, F') which will be interpreted as dependent values; intuitively the script
F'" depends on the values v.

At the risk of being verbose, the syntax has explicit notations for the
various forms of names which can be declared. In (newcc:C) P a new
local channel named ¢ is declared, while (newregn : N) P represents the
generation of a new globally registered name n for channels; see [8] for mo-
tivation. When a new location is declared, in (newlock : K)with @ in P,
its declaration type K can only involve channel names which have been
registered. This construct generates the new location k, sets the code Q)
running there, and in parallel continues with the execution of P. This
specific construct for new locations is required since code may only be
executed at a location once entry has been be gained via a port; so here
@ represents the code with which the location is initialised.

The main novelty in SAFEDPI, over DPI, is the construct

goto, k. F

Intuitively this means: migrate to location k via the port p with the code
F. Our type system will ensure that F' is in fact a script with a type
appropriate to the port p; moreover entry will only be gained if at the
location k the port p is currently active.

The various binding structures, for names and variables, gives rise
to the standard notions of free and bound occurrences of identifiers, o-
conversion, and (capture-avoiding) substitution of values for identifiers
in terms, P{%/u]}; this is extended to patterns, P{V/x[} in the standard
manner. We omit the details but three points are worth emphasising.
The first is that many such substitutions may give rise to badly formed
process terms but our typing system will ensure that this will never occur
in well-typed terms. The second is that identifiers may occur in our types
and therefore we require a notion of substitution into types; this will be
explained in Section 3. Finally terms will be identified up to a-equivalence,
and bound identifiers will always be chosen to be distinct, and different
from any free identifiers.

In the sequel we use system to refer to a closed system term, that is
a system term which contain no free occurrences of variables; similarly a
process means a closed process term.

8 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

REDUCTION #EMANTICS: This is given in terms of a binary relation be-
tween systems

M — N
and is a mild generalisation of that given in [8, 10] for Dp1.

DEFINITION 2.1 (CONTEXTUAL RELATIONS). A relation R over systems
is said to be contertual if it preserves all the system constructors of the
language; that is M R N implies

e M|ORN|Oand O|MRO|N

SAFEDPI: a language for montrolling mobile sode 9

(R-COMM) (R-SPLIT)

K[! (V)I [k[e?(X - T) PT — k[P{V/x}] k[P | Q] — K[P] | K[Q]

(R-N.CREATE) (R-MOVE)

k[(newregn : N) P] — (newn : N) k[P] k[goto, [.F] — I[p!{(F)]

(R-L.CREATE)

k[(newlocl : L)withC in P] — (new! : L)(K[P] | I[C])
(R-C.CREATE) (R-UNWIND)

k[P] | M — M’

k[(newcc: C) P] — (newc: Cak) k[P] k[+«P]| M — k[xP]| M’

(R-EQ) (R-BETA)
k[if u = u then P else Q] — k[P] E[(\ (Z:T). P)(®)] — k[P{%}]
(R-NEQ)

k[if u = tthen P else Q] — k[

SAFEDPI: a language for wontrolling mobile sode 11

at this type then it can transmit values of at most type T, along it
and receive from it values which have at least type T,. In the formal
description of types there will be a subtyping constraint, that T,, must
be a subtype of T,, explained in detail in [19]. When the transmit
and receive types coincide we abbreviate this type by rw(T). We also
allow the types w(T,,) and r(T,), which only allow the transmission,
reception respectively, of values.

GLOBAL RESOURCE NAME TYPES, ranged over by N: These take the form
rc(C), where C is a channel type. Intuitively these are the types of
names which are available to be used in the declaration of new loca-
tions. They allow an individual resource name, such as print, to be
used in multiple locations, resulting in a form of dynamic typing.

LocATION TYPES, ranged over by K, L: The standard form for these is
|OC[U1 : C1, cee s Up Cn]

where C; are channel types, and the identifiers u; are distinct. An
agent possessing a location name k with this type may use the chan-
nels/resources u; located there at the types C;; from the point of view
of the agent, k is a site which offers the services u,...u, at the corre-
sponding types. In the formal definition we will require each u; to be
already declared as a global resource name. If n is zero then the agent
knows of the existence of k£ but has no right to use resources there. We
abbreviate this trivial type from loc|| to loc. We also identify location
types up to re-orderings.

PROCESS TYPES, ranged over by m. The simplest process type is proc,
which can be assigned to any well-typed process. More fine-grained
process types take the form

priuy : Crewsy, ... uy, : Chawy,]

where the pairs (u;,w;) are assumed to be distinct. A process of this
type can use at most the resource names u; at the location w; with
their specified types C;; these types determine the locations at which
the channels u; may be used.

¥CRIPT TYPES, ranged over by S: The general form here is

Fdep(Z : T —)

Scripts of this type require parameters (0) of type (T); when these are
supplied the resulting process will be of type 7{%z}. In other words the
type of the resulting process may in general depend on the parameters.
In these types we allow 7 to contain occurrences of a special location

SAFEDPI: a

14 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

o z : (T with § : I~E> This represents a package, which will be used to
handle existential types. Intuitively this defines the association = : T
but the type T may depend on the auxiliary associations ¢ : E.

Lists of assumptions are created dynamically during typechecking, typ-
ically by augmenting a current environment with new assumptions on
bound variables. It is convenient to introduce a particular notation for
this operation:

DEFINITION 3.2 (FORMING ENVIRONMENTS). Let {V : T} be a list of
type assumptions defined by

e {v:Cow}=v:Caw

o {vr:S}=x:S

o {v:locuy:Cyq,...u,:Cyl} =v:loc,uy: Ciav,...u, : Chav

o {(§,7) : Tdep(§: E) T} ={y1 : Ex}... ,{yn : En}, {z: T}

o {z:Edep(§:E)T} =2 : (Twith {y1: E1}..., {yn : En}) u

Of course there a lots of other possibilities for V' and T but only those
mentioned give rise to lists of assumptions. Moreover even those given
may give rise to lists which are not consistent. For example we should
not be able to introduce an assumption u : loc if u is already designated
a channel, or introduce v : Cew unless w is known to be a location. Since
type expressions also use identifiers, before introducing this assumption
we would need to ensure that C is a properly formed type; for example it
should only use identifiers which are already known. In order to describe
the set of valid environments we introduce judgements of the form

Fl_env

The inference rules are straightforward and consequently are relegated to
the appendix, in Figure 10. We also relegate to there the definition of
subtyping judgements, of the form

I'-T<:U,

given in Figure 11. Again the rules are straightforward, and mostly inher-
ited from [8]. However it is worth noting that process types are ordered
differently than location types. For example we have

[k prlug : Ciek] <: prlug : Ciek, us : Coal]
but
' |OC[’LL1 : Cl,UQ : CQ] <: |OC[’LL1 : Cl]

SAFEDPI: a language for montrolling mobile sode 15

assuming, of course, that the various types used, C;, C; are well-defined
relative to I'.

These rules have been formulated so that they can also be used to say
what is a valid type relative to a type expression.

DEFINITION 3.3 (VALID TYPES). We say the type expression T is a valid

type relative to I', written I' = T : ty, whenever we can derive the judge-
ment ' =T <: T. |

Types can be viewed intuitively as sets of capabilities and unioning these
sets corresponds to performing a meet operation with respect to subtyping.
This we now explain. Let (D, <) be a preorder. We say a subset £ C D
is lower-bounded by d € D if d < e for every e in E. Upper bounds are
defined in a similar manner.

DEFINITION 3.4 (PARTIAL MEETS AND JOINS). We say that the preorder
(D, <) has partial meets if every pair of elements in D which has a lower
bound also has a greatest lower bound. This means that for every pair of
elements dy,ds in D which has some lower bound, that is there is some
element in d € D such that d < dy, d < ds, there is a particular lower
bound, denoted d; ' do which is less then or equal to every lower bound.
The upper bound of pairs of elements, d; LI ds is defined in an analogous
manner. |

Let Typesr denote the set of all type expressions T such that I' = T : ty.

THEOREM 3.5. For every I', the set Typesy, ordered by <:, has partial
meets and partial joins.

Proof: See Proposition A.2 in Appendix A |

Intuitively the existence of T I U means that T and U are compatible, in
that they allow compatible capabilities on values at these types. Moreover
the type TMU may be viewed as a unioning of the capabilities allowed by
the individual types.

It is worth pointing out that with our type expressions set Typesp
turns out to be not only a preorder but also a partial order. However this
would no longer be the case if we allowed recursive types; nevertheless
with this extension our results would still apply. Note also that because
of the existence of the top type T, useful in Section 6, joins of types are
always guaranteed to exist.

3.3 Type Enference

We are now ready to describe the type inference system for ensuring that
systems are well-typed.

16

Matthew Hennessy, Julian Bathke and Nobuko Yoshida

(TY-GNEW) (TY-CNEW)
Lyn:rc(C) - M [,c: Cak - M
'k (newn :rc(C))M T F (newc: Cok) Mk-

18 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

types we need to invent a new kind of value (0, v); these do not occur in
the language SAFEDPI, and are only used by the type inference system:;
intuitively (0,v) is a package consisting of the value v together with the
witnesses ¢, which provide evidence (for the type inference system) that
v has it’s required type. The rule (TY-EDEP), which might also be called
(TY-PACK), allows us to construct such values. It is similar to the rule for
dependent tuples. The package (0, v) can be assigned the type Edep(7 : E) T
provided we can establish that v; can be assigned the type v; : E;{%z}
and v the type T{%z[. Dependent tuples can be deconstructed and their
components accessed in the standard manner; see the fourth clause of
Definition 3.2. However the corresponding deconstruction for existential
types only allows access to the final component, and not the witnesses;
(TY-UNPACK) allows the value, rather than the witnesses, to be extracted
at the appropriate type from the package. Similarly (TY-ELOOKUP) only
allows knowledge of the value, and not the witnesses, to be deduced from
an existential assumption.

In Figure 7 the rules for name generation, (TY-NEWCHAN),(TY-NEWLOC)
and (TY-NEWREG), are simple adaptations of the corresponding rules at
the system level; note that in (TY-NEWLOC) we are guaranteed that the
new name k does not occur in the type m, because rules at(-NEWLOC)

SAFEDPI: a language for wontrolling mobile sode

19

20

Matthew

SAFEDPI:

22 Matthew Hennessy, Julian Bathke and Nobuko Yoshida
tantly the type at

SAFEDPI: a language for montrolling mobile sode 23

which in turn follows from
[',{z:L,} ., goto,, z.ping!(v) : proc
This is a consequence of applying the typing rule (TY-GO) to the judgement
[{z: Ly} F, inl(ping!(v)) : proc (6)
The type environment I',{z : L, } takes the form
I', z : loc,in : w(thunk)az, ping : W(V,)ax

Therefore (6) follows from an application of the simple form of the output
rule (TY-OUT), provided we can establish

[,z : loc,in : w(thunk)az, ping : w(Vp)aex F, A (). ping!{v) : thunk,
that is
I,z : loc,in : w(thunk)az, ping : w(V,)ex F, ping!(v) : proc
Finally this requires the judgement
I,z : loc,in : w(thunk)az, ping : w(Vp)ax F, v : V), (7)

Note that this checking of v is carried out relative to the variable
location z; so the type V, needs to be some global type, whose meaning is
independent of the current location. This could be a base type such as int,
although we will see more interesting examples, such as return channels,
later.

4.3 &ite protection

A simple infrastructure for a typical site could take the form
hlin?(: 1) xrung | 5]

The on-site code S could provide various services for incoming agents,
repeatedly accepted at the input port in. In a relaxed computing environ-
ment the type | could simply be thunk indicating that any well-typed code
will be allowed to immigrate. In the sequel we will always assume that
when the type of the port in is not discussed it has this liberal type.

However constraints can be imposed on incoming code by only pub-
licising ports which have associated with them more restrictive guardian
types. In such cases it is important that read capabilities on the these
ports be retained by the host. This point will be ignored in the ensuring
discussion, which instead concentrates on the forms the guardian types
can take.

Consider a system consisting of a server and client, defined below,
running in parallel.

24

Matthew Hennessy, Julian Bathke and Nobuko Yoshida

Server: s[req?(&§ : S)run€ | * news!(scondar)]
Client: c[goto,e, s.news?(z) goto;, c. report!(x)

|in?(&€ : R)run& | report?(ygoto

SAFEDPI: a language for montrolling mobile sode 25
server, S. By dethunking we get the requirement
I' F, news?(z) goto,, c. report!(z) : pr[news : r(string)as, in : w(R)ac]

This is established via an application of the rule (TY-IN). The first premise
is immediate since we assume I' I, news : rw(string). Moreover the second
amounts to

[,z : string -, goto;, c. report!(x) : pr[news : r(string)as, in : w(R)ac]

because the value being received is a string; that is prep[z : stringas] is the
trivial process type prl].

The significant step in establishing this second premise is to check that
the code returning to the client satisfies its guardian type R:

I,z : string I, inl{ report!(x)) : pr[news : r(string)as, in : W(R)ac] (9)

However this is straightforward since R is the liberal guardian thunk. It
follows by an application of the output rule (TY-0OUT) in Figure 7. But it
is important to note that in the application the third premise is vacuous,
as pren[A (). report!(z) : proc] is the trivial type pr|].

The current type R = thunk leaves the client site open to abuse but it
is easy to check that the above reasoning is still valid if the guardians are
changed to

R: th[report : w(string)ac]

S: th[news : r(string)as, in : w(R)ac]
Here the guardian for the client only allows in agents which write to the
local port report; note that this change requires that the guardian at the
server site also uses this more restrictive type in its annotation for the
port in at c.

One can check that with these new restrictive guardians the system is
still well-typed. The only extra work required is in providing a proof for
the judgement (9) above, ensuring that the code returning to the client
satisfies the more demanding guardian. By an application of (TY-GO) and
(TY-0UT) this reduces to the judgement

[, : string =, A (). report!{x) :th[report : w(string)ac]
which is a straightforward consequence of (TY-OUT).
It might be tempting to define the guardians by
R: th[report : w(string)ac]
S: th[news : I’<string>@8, in : W<thunk>@C]
Here both server and client protect their own resources but the server is
uninterested in what happens at the client site, by allowing code with

26 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

arbitrary capabilities on the client port in. However there is an intuitive
inconsistency here. The client has read capability at its port, at the re-
strictive type R, while somehow the server has obtained a more liberal
write capability there, namely thunk.

In fact the system can not be typed with these revised guardians. In
particular

[t/ s[req?(£ : S) run(]

Any derivation of this judgement would require the judgement

[E:SH, rung
which in turn would require
I'ES:ty
or more formally
'-S<:S

But as we will see this can not be inferred; that is S is not a valid type,
relative to I'.

To see why let us suppose, for simplicity, that the port in has been
declared at the site ¢ with a type of the form rw(R, W) for some type W.
One constraint in the type formation rules, (see (TY-CHAN) in Figure 11)
is that the write capabilities on a channel are always a subtype the read
capabilities; in our setting this means that I' W <: R. Our rules also
ensure that ' F, in : w(T,) implies I' F T,, <: W and consequently
'-T, <:R.

However the structure of R ensures that I'V F thunk <: R for no IV, from
whichthaty

SAFEDPI: a language for montrolling mobile sode 29
client server from (8) above:
Server: s[req?(E withy : Sg)run& | * news! (scnda) |
Client: c[(newc report)

12
goto,., 5.news?(z) goto;, c. report!(z) with ¢ | (12)

in?7(£: R)runé | report?(y)...]
with the types

R: thunk
Sa: Tdep(y : 1) th[news : r(string)as, in : w(R)ay]
| : loc[in : w(R)]

Here the

30 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

which in turn requires the premise

I,y : loc, in : w(thunk)ay - thy, : ty (13)

SAFEDPI: a language for montrolling mobile sode 31

the usual process to the server but now accompanies it with the triple
(¢, report, in)

The code for the server is the same except that accompanying the
incoming thread it expects three values. Its guardian type S; however is
changed to

Sqg: Tdep(y : loc, z : w(string)ay, = : w(th[z : w(string)ay])ay)
th[news : r<string>@8, €T : W<th[z : W<string>@y]>@y]
Here, once more, this guardian type does not mention any client names,
but it allows clients to employ much more restrictive guardian types at
their own sites. We leave the reader to check that this revised system can
still be typechecked.
4.6 Existential process types

The use of dependent script types, as in the previous subsection, has
certain disadvantages from the point of view of the clients. For example
in

32 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

output rule for existential types; see (TY-OUTE) in Figure 7, which has
already been explained in Section 3.3.
Let us now reformulate (14) above using existential types:

Server: s[req?(€ : Se) run€ | * news!(scanda)]
Client: c[(newc report)
(newcin : rw(R)) (16)

goto,., 5.news?(z) gotoy, c. report!(z) |
in?(& : R)run¢ | report?(y) .. .]
Here the guardian type S, is

Edep(y : loc, z : w(string)ay, = : w(th[z : w(string)ay])ey)

SAFEDPI: a language for montrolling mobile sode 33

This is necessary in order to ensure that run can be applied to £&. Here we
use an application of (Ty-ELOOKUP) from Figure 6 to obtain

I'{€:Sc} . & thy
One can also establish, using the subtyping rules,
I {g : Se} - thy <! proc

and therefore by (TY-SUBTYPING) from Figure 6 we obtain the required
judgement (18) above.

Now let us examine the client. Here the central point is to ensure that
the goto,., s.... command is well-typed, which amounts to establishing
the judgement:

[, report : rw(string)ac t, req!(news?(z) goto, . c.report!(z)) : proc
Here the relevant rule is (judgement:

r

Y

SAFEDPI: a language for montrolling mobile sode 35

(F foo), running at s, to behave in accordance with the type
pr[foo : r(string)as, in : w(thunk)ac]
This is indeed the case as F' can be assigned the parameterised type
Fdep(y : r(string) — pr[y : r(string)ohere, in : w(thunk)ac|) (21)

To see this let I' be as described on 24. Then, using a simple variation on
the inference described there, we can infer

I,y : r{string)as -, y?(x) goto,, c. report!(x) : pry : r(string)ehere, in :

36 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

which is in turn an elaboration of the example we have just considered:

Server: s[req?(€ : Sse) (€ news) | * news!{scanda)]
Client: c[(newc report)
(newcin : rw(R))
goto,eq 5. F |
in?(€ : R) string). y?(x newke server, and at
the same time the server isawaref reply meplmoeisihs

' client; indeed these are generated dynamically by the client and used
the script F' tobedentserver. One

SAFEDPI: a language for wontrolling mobile sode

38 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

An interesting consequence of this result is that whenever the conditions
of the proposition hold C; M C, is guaranteed to exist. This is spelled out
in detail in Proposition A.2 in the Appendix.

As usual the proof of Subject Reduction relies on the fact that, in a
suitable sense, type inference is preserved under substitutions. We require
two such results, one for standard values, and one for the existential values
used in type inference.

LEMMA 5.4 (FUBSTITUTION). duppose I' -, v : T with x not in T.
Then ',z : (T)ew,A &, J : T implies I'y A{%%:} & oy J{Yelt : T{Y/z}

Proof: First note that the entry = : (T)ew; can only take one of three
forms, a channel registration, x : rc(D), a location declaration = : loc, a
channel declaration, = : Cew’ or a script declaration x : S. The proof is
by induction on the inference of I';z : (T)eaw;,A F,, J : T, which can
use the rules from Figure 6 or Figure 7. For convenience we use o to
denote a{¥z| for the various syntactic categories a. Also we use I', as
an abbreviation for the environment I', z : (T)ew;, A. First let us look at
some cases from Figure 6.

e Suppose (TY-LOOKUP) is used. So I'c I, u : E because
(1) ' - env
(ii) e has the form 'y, u : (E)ews,. ...

The substitution result for well-defined environments, Proposition A.5
in the appendix, ensures that

(1’) F, A’ F env
To obtain the corresponding
(i) ', A’ has the form Ay, u’ : (E')ew), ...

we perform a case analysis on where u : (E)ews occurs in I'p; with
(i’) and (ii’) an application of the rule (TY-LOOKUP) gives the required
[k, u @ E.

If it occurs in " then (ii’) is immediate since the substitutions have
no effect. If it occurs in A then v’ : (E')ews occurs in A’ and so
(ii”) holds. Finally u : (E)ewy could coincide with z : (T)ew;. There
are now a number of cases, depending on the form of (T)ew;. As
an example suppose it is Caw;. Then w; and wsy coincide and x can
not appear in C,w;. Therefore the hypothesis I' -, v : C gives the
required result, I',y A’ I, v : C, by Weakening.

e The case (TY-ELOOKUP) is very similar, although there are only two

40 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

the latter contains ...k : loc,v : (C} M C)ek,.... Nevertheless it will
always be the case that

A ({k: K =T,A, ({k: K'})

and therefore by Weakening (i’),(ii’) and (iii’) apply also to the latter.
So (TY-LOC) can be applied to these to obtain the required

A"+, (newlock : K')withC” in P': 7'
e Suppose (TY-IN) is used. So I' -, u?(X : U) P : m because
(i) Te F prlu: r(U)aws] <:
(ii) Te, {X : (V)ows} b, P: (mUpren[X : (U)ews])
Applying the substitution result for subtyping, Proposition A.5 we get
i) T,A"F pru’ : r{U"Yawh] <: 7’

/

since (prlu : r(U)ews])" is pr[u’ : r(UYew)]. Applying induction to (ii)
gives

(i) T, A, ({X : (U)ewsa}) F,p P (U pren[X @ (U)aws])’
Now substitutions distribute over LI (see Proposition A.3 in the Ap-
pendix), and also over the channel extraction function (See Proposi-
tion A.4). So this may be rewritten

(i) T, A", ({X : (U)ews}) s P’ (7' Upren[X : (U)ew))])

as x is guaranteed not to be in the pattern X. As in the previous case,
we can show that

F, Al, ({X : (U)@wg})’ = F, Al, {X : (U,)@’wé}

although because of location types they may not be identical. Never-
theless this is sufficient to be able to apply (TY-IN) to (i’),(ii’) to obtain
the required I', A" I, w?(X : U") P': 7 |

This substitution result can be generalised to arbitrary patterns, but
we only require it in a special case:

COROLLARY 5.5. Let X be

SAFEDPI: a language for wontrolling mobile sode 41

So I'{X : (K)ew} is ',z : loc,u; : Ciez,... ,u, : Cyex which can be

written as
[, z:loc, (uy : Ciez,... ,u, : Char)
So applying the previous lemma we obtain
Tug : Clav, ... up 2 Cpav by oy J{Yelt : T{%]}

But I' -,, v : K means that I' -, u; : C; for each ¢. So we see that
I'=T,uq : Ciav,...u, : C,av from which the required

Loy JAYl - T{]
follows. [|

The corresponding result for existential types uses different substitu-
tions into processes and types. The crucial property of existential values
is that the use of their witnesses is very limited:

PROPOSITION 5.6. #@uppose 'y : (T with & : E),TY +, J : T. Then
z; & fv(J) and z; does not occur in T w.

Proof: By induction on the inference. Intuitively the result follows from
the fact that the only information available, via (TY-ELOOKUP), from the
entry y : (T with # : E) is that y has the type T; no information on z;
is available. The proof relies on the corresponding result for well-defined
environments and subtyping, Proposition A.6 |

This result provides the central property underlying the substitution result
for existential values.

LEMMA 5.7 (ESUBSTITUTION). &uppose I' bk, (5,v) : Edep(Z : E)T.
ThenT,y : ((T)ew; with 7 : E), A F,, J: T, wy : loc implies T’y A%y} Fo. g
Ll - T{¥zl

Proof: The proof follows the lines of that of Lemma 5.4, with frequent
applications of the previous proposition, Proposition 5.6, to ensure that
only the substitution of v for x is applied to process terms and names. As

usual certain cases depends on the corresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.
H

THEOREM 5.8 (fUBJECT REDUCTION).
auppose I' = M. Then M — N impliesT" = N.

Proof: It is a question of examining each of the rules in Figure 2 in
turn. Note that (R-STR) requires that typing is preserved

42

Matthew Hennessy, Julian Bathke and

SAFEDPI: a language for montrolling mobile sode 43

e (u, F) a tuple in which the last value F’, a script, may depend on the
first-order values (). These have a type of the form Tdep(Z : A) S.

e I a script, the final component of an existential value (u, F') with a
type of the form Edep(Z : A)S.

Simple scripts may be simulated via the empty dependent type Tdep() S,
as can simple first-order values, via the type Tdep() A. Our results extend
to the full language, although the proofs require the development of more
complicated notations.

6.1 A contextual equivalence

We intend to use a context based equivalence in which systems are asked
to be deemed equivalent in all reasonable SAFEDPI contexts. What is
perhaps not so clear here is the notion of reasonable context. In previous
work on mobile calculi, [9, 8,

SAFEDPI: a language for montrolling mobile sode 45

Thus, in representing the environment’s knowledge of the system we must
also represent the information about which locations are available for di-
rect testing. This motivates the following definition.

DEFINITION 6.3 (KNOWLEDGE STRUCTURES). A knowledge structure is
a pair (I', T), where

e ' is a type environment such that I' F env
e 7 is a subset of LOCS such that if K € 7 then k : loc e "

We use Z to range over knowledge structures and write Zr and Z7 to refer
to the respective components of the structure. We sometimes refer to

writelJ

46 Matthew Hennessy, Julian Bathke and Nobuko Yoshida
(4) Z,{n: E} E MR N impliesZ = (newn : E) M R (newn:E)N ®H

In the first condition we are assured that £ is a fresh location; therefore
this form of weakening allows the environment to create for itself fresh
locations at which it may deploy code. The second form of weakening,
in (2), allows it to invent new names with which to program processes.
Condition (3) allows it to place well-typed code at sites to which it has
access rights, while (4) is the standard mechanism for handling names
which are private to the systems being investigated.

BARB PRESERVATION: For any given location k£ and any given channel a
such that k € Zr and Zr -, a : rw(unit) we write Z = M {P>® gak if there
exists some M’ such that M—*M' | k[a!(})]. We say that a knowledge-
indexed relation is barb preserving if T = M R N and Z -+ M |*® gk
implies Z - N {|P2® gok.

DEFINITION 6.6 (REDUCTION BARBED CONGRUENCE). We let ~.,; be
the largest knowledge-indexed relation over systems which is

e pointwise symmetric (that is Z = M ~¢; N implies Z = N x.;y N)

e reduction closed

e contextual

e barb preserving |

We take reduction barbed congruence to be our touchstone equivalence
for SAFEDPI as it is based on simple observable behaviour respected in all
contexts. The definition above is stated relative to choice of the knowledge
structure Z. We should point out however that, for any given systems
M, N and type environment I' such that I' - M and I' F N then there
is a canonical choice of knowledge structure Z, namely, (T, 7r) where we
let 70 = {k | k :loc € I'}. This choice of knowledge structure gives
rise to what we feel to be a natural and intuitive notion of equivalence for
well-typed SAFEDPI systems.

Of course, the quantification over all contexts makes reasoning about
the equivalence virtually intractable. However it is common practice, [19,
21, 1, 9, 8], to provide some sort of model or alternative characterisation
in terms of labelled transition systems, which makes the behaviour of
systems much more accessible. In particular if the actions in the labelled
transition system are sufficiently simple this can lead to automatic, or
semi-automatic verification methods.

In the next section we show that this contextual equivalence for SAFEDPI
can be characterised in a similar manner, as a bisimulation equivalence
over a suitably defined labelled transition system.

SAFEDPI: a language for montrolling mobile sode 47

6.2 A bisimulation equivalence

We first discuss the labels, or actions, to be used in the labelled transition
system. They are given by the following grammar:

az=rT1|(n: E)gopk.F

SAFEDPI: a language for wontrolling mobile sode

(M-RECEIVE)

kelr

T=MZ¢(ak) T¥(ak) #0
IrE, VT

(Z > k[a?(X : U) P]) 2255 (T > k[P{V/x}])
(M-DELIVER)

kelr

T=T1Zr(a, k) I¥(a,k) #0

Ir b, VT

(Zr> M) 2225 (T M | k[a(V)])
(M-SEND.VAL)

kelr Ta first-order type
T:HIIC(aak) I{‘(aak) #
Ir‘, {’Ij . (T)@k} F env

(Z > k[al(u)]) 2% (Z,{u : (T)ek} > k[stop])
(M-SEND.SCRIPT)

ke lr T of the form Edep(Z : T) S

T =[1Zr(a, k) Ir(a, k) #

Ir l_k G : T — proc

(Z > k[a/(F)]) 225 (Z > K[G (F)])
(M-SEND.DEP.SCRIPT)

keZIr T of the form Tdep(Z : E) S
T:HIP(avk) I{‘(avk) #0

II‘, {INL . (E)@k} F env

Ir l_k G : T — proc

(Z > k[a!((q, F))]) £2@9DY (T {7 (E)ek} > k[G (@, F)])

(M-GOTO)

kg Ir
Ir‘ l_k p'<V> . proc

(Z > M) £V (T > M | k[pH(V)])

FIGURE
FIGURE
FIGURE

49

50

Matthew Hennessy, Julian Bathke and Nobuko Yoshida

SAFEDPI: a language for montrolling mobile sode 51

The inference rules for the action judgements (23) are given in Fig-
ures 9, and again they are informed by the corresponding rules in Fig-
ure 10 of [8]. Here we abuse notation a little by writing (m)a to mean
(7 : E)(m,m)o’ whenever « is (72 : E)(m)a’. Note that, unlike in [8], we
have two weakening rules; the new one, (M-7WEAK), allows the environ-
ment to invent a new location £ at which it has access rights.

As a sanity check on these judgements we give a precise description of
the possible forms the actions can take; to aid readability we will use G
to represent a script furnished by the environment and F' to represent one
furnished by the system:

PROPOSITION 6.7. &uppose that Z > M is a configuration from which
(Zt> M) 25 (Z' > N), where « is not 7. Then « takes one of the following
forms:

FIRST-ORDER: input (7 : E)k.a.(@)?, where () C (@), or output (m)k.a.(i)!,
where (m) C (a)

SCRrIPT: input (7 : E)k.a.F?, where (i) C fn(F), or output (7 : E)k.a.G!
where (1) C fn(G)

DEPENDENT SCRIPT: input (7 : E)k.a.(i, F)?, where (i) C (@) U fn(F),
or output (7 : E)(m)k.a.(t, G)!, where (n) C fn(G) and () C (a)

AYNCHRONOUS-GOTO: (7 : E)go,k.F, where (i) C fn(F).
Proof: By induction on the inference of (Z > M) % (Z' > N).

52 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

can be inferred from Figure 8 and Figure 9. The standard definition of
bisimulation therefore gives a co-inductive relation over configurations:

DEFINITION 6.9 (BISIMULATIONS). We say the binary relation between
configurations R is a typed bisimulation if C 'R D implies

e C % (" implies D =% D’ for D’ such that ' R D’
e D -2 D implies C =% C’ for C’ such that ' R D’

where =2 is the standard notation, meaning —=»* % -T3* for a not equal
to 7 and —/—* otherwise.

We write Z = M =p;s N whenever there exists some bisimulation R
such that (Z> M) R (Z> N). |

With this notation, that is by viewing the knowledge-structure Z as a pa-
rameter, we construe ~;; to be a knowledge-indexed relation over systems.
This enables us to compare it directly with the touchstone behavioural
equivalence ~.,;. The main technical property we require of ~;, is given
in the following result:

PROPOSITION 6.10. The knowledge-indexed relaton ~;s is contextual.

Proof: This follows similar lines to the equivalent statement in [8]. For
this reason we only show that ~;; is preserved by parallel composition

here. Let R be defined by
(Z > (newdi: Ty) M| [&[P]) R(Z > (newdi: To) N |][ks[P])

i€l iel
if and only if there exists some Z5., (T) and 7" such that
Iﬁ <:Ir 5 5 3
(T1) <: (T) and (To) <: (T)
T ' Cn

I+ k[P;] and k; € Zy + T for each i € T
(Ill""IT + T/)’ {ﬁ : T} ‘: M =~pis N

We aim to show that R is a bisimulation from which the result follows
immediately. For the purposes of this exposition we will assume that n is
empty and that the indexing set [is a singleton. We take any

(Z> M |k[P]) R (Z> N | k[P])
so we have some Z]. such that
(Zr,I7) B M ~pis N (24)
with Z|. - k[P] and k € Z7. We suppose that (Zt> M |k[P]) = (Z' > M)

and now must show that there is a corresponding matching move from

SAFEDPI: a language for wontrolling mobile

54

Matthew Hennessy, Julian Bathke and Nobuko Yoshida
with [, k € Z7 also. Therefore, by definition of R again, we see that
T b (new!: L)(M |I[C] | K[Q]) R (new : L)V [1[C] | KIQD) (25)

We know that (Z> N | k[P]) = (Z> (new!l: L)(N |I[C] | k[Q])) and
that M’ = M | M"” = (new! : L)(M | I[C] | K[@]), so by (25), we have

Tl= M R (newl: L)(N|I[C] | k[Q])

and our matching transition as required.
Alternatively, suppose that k[P] — M" is derived from an in-
stance of (R-MOVE). We then have

P =gotoplFF and M"=I[p(F)]

for some p,[, F'. It is important to note here that the location [may
not be contained in Z7 and this prevents us from immediately using
the definition of relation R to claim that

T M I[P RN

SAFEDPI: a language for montrolling mobile sode 55

where U’ <: U. Call the target knowledge structure Z"”. This tells us,
by (24) that there exists a matching transition

(1'1/_‘,1'7_) > N (m)k.a.(m' G)! (I

SAFEDPI: a language for montrolling mobile sode 57

if Z = M =~.;; N. We outline the proof that R defines a bisimulation,
from which the result follows.

To this end suppose (Z > M) = (Z' > M'), where T = M R N.
We must find a matching move (Z > N) =% (Z’ > N’), such that 7' |=
M’ R N'. For the purposes of this sketch we assume for simplicity that
Z = T'. By Definability, Proposition 6.12. We know that there exists a
system CZ, typeable from Zr, {ko : Ky}, which satisfies the conditions of
contextuality for

58 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

The case in which (Zt> M) -2 (Z't> M') for 7’ not equal to T is slightly
more complicated and is dealt with using an Ezxtrusion Lemma similar to
that found in [6, 9, 8]. |

This provides an alternative characterisation of reduction barbed con-
gruence which models the nature of knowledge acquisition possible by
testing with highly constrained mobile code in an explicit way.

7 Conclusion

We have developed a sophisticated type system for controlling the be-
haviour of mobile code in distributed systems, and demonstrated that,
at least in principle, coinductive proof principles can still be applied to
investigate their behaviour.

The use of types in this manner could be considered as a particular
case of the general approach of proof-carrying code, [18] and typed assembly
language (TAL) [17]. Here hosts would publish their safety policies in
terms of a type or logical proposition and code wishing to enter would
have to arrive with a proof, which a typechecker or proofchecker can use
to verify that it satisfies the published policy. Indeed we intend to use
the types of the current paper in this manner, by extending the work in
[20]. The work of [18] and [17] has inspired much further research into
the use of type systems in higher-level languages for resource access and
usage monitoring, [23], [12], for example. However the emphasis in these
papers is on dynamics and counting of resource usage rather than using
sophisticated types to specify fine-grained access control.

There has been much work on modelling mobility and locations using
particular process calculi. Perhaps the calculus closest to SAFEDPI is the
Seal Calculus, [5]. Seals are hierarchically organised computational sites
in which inter-seal communication, which is channel-based, is only allowed
among siblings or between parents and siblings. Seals may also be com-
municated, rather like the communication of higher-order processes along
ports in SAFEDPI; indeed in some sense it is more general as the seal being
transmitted may be computationally active. However the communication
of seals is more complicated, as it involves agreement between three par-
ticipants, the sender, the receiver, and the seal being transmitted. Seals
are also typed using interfaces, similar to our fine-grained process types,
w. But these only record the input capabilities a seal offers to its parents,
and in order to preserve interfaces under reduction the transmission of
input channel capabilities is forbidden in the language. This is a severe
restriction, at least in general distributed computing, if not in the more fo-
cused application area of seals. For example the generation of new servers

SAFEDPI: a language for montrolling mobile sode 59

requires the the transmission of input capabilities. We believe that our
dependent and existential types can also be applied to the Seal Calculus,
to obtain a more general notion of interface, which will still be preserved
by reduction.

The M-calculus, [22], a higher-order extension of the distributed join
calculus, is also closely related, at least conceptually, to SAFEDPI. Here,
not only are locations hierarchically organised, but are programmable, in
the sense that entry and exit policies for each location can be explicitly
programmed. In addition it has an interesting operator, called passivation,
which can freeze the contents of a site into a value. However their type
system is not related to one we have developed for SAFEDPI; the latter
addresses access control issues for migrating code whereas the former is
concerned with unicity of locations; in a higher-order language with a
passivation operator it is important to ensure that each locality has a
unique name. Thus the type system for the M-Calculus draws on that
presented in [24], where unicity of the location of channel names was
addressed, rather than that of [25], which developed fine-grained access
control types for processes.

Type systems have also been used to explicitly control mobility in
distributed calculi, most notably in variants of the Ambient calculus of
Cardelli and Gordon [3]. In particular, [2], [16] use subtyping to con-
trol movement of mobile processes in a hierarchically distributed system
by introducing explicit types to express permission to migrate. A simi-
lar technique was used for Dp1 in [10], [8]. In contrast, here we control
mobility only indirectly through types. Code is always permitted to mi-
grate provided it has access to a suitable port at the target location. But
by restricting the use of channels in the types this consequently restricts
migration. Indeed, we decouple permission to migrate from the location
name itself, affording more flexibility in the control of migration.

The coinductive characterisation presented here makes use of higher-
order actions in the sense that, to interact with a system willing to send
a script V', the environment must supply a receiving script G to which V'
will be applied. A similar approach is used in the characterisation theo-
rems for various forms of ambients in [7] and [15]. Higher-order actions
are also used in the bisimulation equivalence presented in [4] for the Seal
calculus. However, there the three way nature of higher-order communi-
cation leads to a proliferation of such actions, some of which can not be
simulated by seal contexts; see Section 4.4 of [5] for examples. As a re-
sult the bisimulation equivalence is more discriminating than the natural
contextual equivalence for seals.

Such higher-order bisimulations do not directly result in automatic

SAFEDPI:

62 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

ously, using the rules in Figure 10 and Figure 11. The former are a mild
extension of the corresponding rules in Figure 6 of [8] to accommodate
script and dependent types and rely on a predicate I' F,,,.., v : T, which
simply looks up the type associated with « in I'. The latter is an extension
of the well-known subtyping rules of types in the PicaLcurus, [21], and
Dri, [10, 8]; the rules for process types are similar to those used in [25].
The judgements also check that the identifiers used in T, U are actually
declared appropriately in I'.

PROPOSITION A.1 (FANITY CHECKS).
e ' T <:U implies I' - env
e 'FT<:UimpliesI'T:ty and '+ U : ¢y
e 'FT<:U, I'FU<:RimpliessI' T <:R
e ''u:TkF envimpliesI' - envand ' T : ty
Proof: By rule induction. |

MEETS AND JOINS: The partial operators ', LI on type expressions are
defined by extending the definitions used in [10, 8] for channel and location
types. We take them to be the least reflexive and symmetric operators
which satisfy a series of rules for combining together various kinds of type
expressions. Those governing channel expressions are, as in [10]:

[F<T1> [l F<T2> = r<T1 [l T2>, F<T1> LI F<T2> = F<T1 LI T2>
® W<T1> M W<T2> = W<T1 LI T2>, W<T1> LI W<T2> = W<T1 [l T2>
o r(T,)Mw(Ty,)=rw(T,, Ty,)
o rw(T,, T,) (T =m(T,.NT,,T,),
rw(T,, Tp)Ur(T) =rw(T, UT., Ty),
o rw(T,, Ty)Iw(T,)=rw(T,, T,UT.,),
rw(T,., Teu)Ur(T,) =rmw(T,, T, MNT,),

To express the rules for location types we take advantage of the fact that
the ordering of their components is immaterial:

e locluy : Ci]Mlocfuy : Cq,... u, : Cp] =locfuy : (C{T1CY), ... uy, : Cyl,
loc[uy : Ci]Ulocluy : Cq, ... ,uy, : Cy] = locfuy : (C) U Cy)]
e if u does not occur in {uy,... ,u,} then
locfu : C]Mlocfuy : Cq,y...yuy : Cy] = loclu : Ciug = Cpyen yuy 0 Gyl
loc[u : C]Uloc[uy : Cq, ... ,uy : C,] = loc]]
o locfu; : Cq,... ,u, : Cy] MK =locluy : C1]M (... (loc[u, : C,]TTK)...),
[

loc[ug : Cq,... ,up : Cu]UK = (locfug : C1]UK) M. ..M (locluy, : C,]UK)

SAFEDPI: a language for montrolling mobile sode 63

We use a similar approach to defining the operations on process types,
where we use GC as an arbitrary type of the form Cew. However the
process type constructor is contravariant, whereas the location constructor
is covariant.

e priu; : Clew] Mprfu; : Clows,... ,u, : GC,] = prluy : (C] U Cq)ewn],
priuy : Clew] Uprluy : Ciewn,... ,u, : GC,| =
priuy : (C] M Cy)awy, ... ,uy, : GC,]
e if uaw does not occur in {ujewsy,... ,u,ew,} then
priu : Caw] Mprlu; : Craw,... ,u, : Chew,] = pr[],
priu : Caw] U prluy : Ciewn, ... ,uy : Chow,] =
priu: Caw,uy : Clawsy ... , Uy, : Cpraw)]

e priuy : GCyq, ... ,u, : GC,] M7 =
(pruy : GCy] M) U ... U (prlu, : GCy] M),
prius : GCyq,... ,up, : GClUm = prlu; : GCJU (... (up : GC Um)...)

.pr0c|_|7T:7T, pr0c|_|7T:proc
For the various forms of dependent types, the rules are straightforward:

® Fdep(Z : T—)W)ﬂFdep(ﬁf‘I-:r—)W,) = Fdep(Z : T—)(WHW/)),
Fdep(Z : T—) LUFdep(Z : T—7') = Tdep(Z : T) (7w U n’)

(Z:T)(TNT),

(z:T)(TUT)

Z:T)T M Tdep(Z : ':I') T' = Tdep
nT

(

(

(z:T

Tdep(Z : T) T L Tdep(Z :
o Edep(7 : T) TMEdep(d : T) T/ = Edep(# : T) (TN T),

Edep(Z : T) T L Edep(Z : T) T/ = Edep(Z : T) (T U T')

For the remaining kinds of type expressions we merely extend the defini-
tions homomorphically:

e rc(CyMrc(C'y =rc(CMC’), rc(Cyrc(C'y =rc(CLIC)
e TawMTew = (TNT)ew
ProproOSITION A.2.

o WBf there exists some type expression T such that I' H T <: Ty and
I'E T <: Ty then T M Ty is well-defined

e When T{MTy is well-defined, I' - T1M Ty <: T, and ' T <: T1 M Ty,
for any type expression T such that ' =T <: Ty and ' T <: To.

o Wi there exists some type expression T such that I' F Ty <: T and
' Ty <: T then T U T,y is well-defined

e When T1UTy is well-defined, ' - T, <: T{UTy,and ' T1UTy <: T,
for any type expression T such that ' - Ty <: T and I' - Ty <: T.

64 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

Proof: The first and third statements are proved by induction on the
derivations of ' - T; <: T and I' H T <: T, respectively. The second and

fourth are by induction on the construction of T1MTy, T1UT5 respectively.
|

Note that because of the top type T the premise of the third statement is
always true; so T1 LI To always exists, although in many cases it will be
the uninformative type T.

FUBSTITUTIONS: Free identifiers may occur in type expressions and there-
fore we need to define T{%u} for an arbitrary type expression T; this is
then used as part of the definition of substitution into process terms. The
definition of T{%Au]} is by induction on the structure of T. The only inter-
esting cases are location and process types, where the definition needs to
ensure that the entries remain unique:

o loc[u : Cl{%u} = loc[u/{?nu]} : C{%u}]
o locfuy : Cq,...up : C[{%u]} =
(locfur : Ci{%kf}) ... 1N (loc[uy, : Cul{%u})

e priu T

SAFEDPI: a language for wontrolling mobile sode

65

66 Matthew Hennessy, Julian Bathke and Nobuko Yoshida

References

[1] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without match-
ing. In Proc. 13th LICS Conf. IEEE Computer Society Press, 1998.

[2] L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In Proc.
IFIP TCS 2000, volume 1872 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[3] L. Cardelli and A. Gordon. Mobile ambients. In Proc. FoSSaCS ’98, LNCS.
Springer-Verlag, 1998.

[4] G. Castagna and F. Zappa Nardelli. The Seal calculus revisited: Contevitual equiv-
alences and bisimilarity. In Proceedings of FSTTCS, Lecture Notes in Computer
Science, 2002.

[5] Giuseppe Castagna, Jan Vitek, and Francesco Zappa. The Seal calculus. 2003.ces

[18]

[19]

[20]

SAFEDPI: a language for montrolling mobile sode 67

George C. Necula. Proof-carrying code. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Sumposium on Principles of Programming
Languages, pages 106—119, Paris, France, jan 1997.

B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
Journal of the ACM, 47(3):531-584, 2000.

James Riely and Matthew Hennessy. Trust and partial typing in open systems of
mobile agents (evtended abstract). In Conference Record of POPL ’99 The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 93-104, 1999. To appear in the Journal of Automated Reasoning.

Davide Sangiorgi and David Walker. The m-calculus. Cambridge University Press,
2001.

A. Schmitt. and J.-B. Stefani. The M-calculus: A higher-order distributed process
calculus. In POPL2003, January 2003.

David Walker. A type system for evpressive security properties. In the twenty sev-
enth ACM SIGPLAN-SIGACT Suymposium on Principles of Programming Lan-
guages, Boston, pages 254-267, 2000.
Nobuko Yoshida and Matthew Hennessy. Subtyping and locality in distributed
higher order processes. In Proc. CONCUR, volume 1664 of Lecture notes in com-
puter science. Springer-Verlag, 1999.

Nobuko Yoshida and Matthew Hennessy. Assigning types to processes. Informa-
tion and Computation, 172:82—-120, 2002.

