
A Fully Abstract May Testing Semantics for Concurrent

Objects

Alan Jeffrey

CTI, DePaul University

Chicago, IL, USA

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

Brighton, UK

julianr@cogs.susx.ac.uk

October 2002

Abstract

This paper provides a fully abstract semantics for a variant of the concurrent object calculus.

We define may testing for concurrent object components and then characterise it using a trace

semantics inspired by UML interaction diagrams. The main result of this paper is to show that

the trace semantics is fully abstract for may testing. This is the first such result for a concurrent

object language.

1 Introduction

Abadi and Cardelli’s [1] object calculus is a minimal language for investigating features of object

languages such as encapsulated state, subtyping, and self variables. Gordon and Hankin [7] added

concurrent features to the object calculus, to produce the concurrent object calculus.

Prior work on the object calculus has concentrated on the operational behaviour of object sys-

tems, and type systems which provide type safety guarantees. The closest paper to ours is Gordon

and Rees’s [8] fully abstract semantics for the immutable single-threaded object calculus. There

has been no work on providing fully abstract semantics for concurrent mutable objects.

In this paper, we present the first fully abstract testing semantics for a variant of Gordon and

Hankin’s concurrent object calculus without subtyping. The lack of subtyping here affords a simpler

presentation of the labelled transitions and traces but we anticipate that the proof techniques used

here are robust enough to cater for subtyping also. This semantics was inspired by UML interaction

diagrams [4], which are a common tool for visualising interactions with object systems.

1.1 Interaction diagrams

Interaction diagrams (in particular sequence diagrams) were developed by Jacobson, and are now

part of the Unified Modeling Language standard [4]. Interaction diagrams record the messages

sent between objects of a component in an object system. These messages include method calls

∗Research partially supported by the Nuffield Foundation. University of Sussex technical report 2002:03

1







• Messages are incoming or outgoing message calls, or matching outgoing or incoming returns.

• Messages are decorated with thread identifiers.

• Messages may include fresh names.

We have only used a very small subset of sequence diagrams, which in turn is a very small subset

of UML, but in this paper we will show that this small subset is very expressive, and in particular

provides a fully abstract semantics.

1.2 The object calculus

The object calculus is a minimal language for modelling object-based programming. Abadi and

Cardelli [1] provided a type system and operational semantics for a variety of object calculi, and

proved type safety for them. Gordon and Hankin [7] have since extended this language to include

concurrent features.

In this paper, we shall investigate a variant of Gordon and Hankin’s concurrent object calculus,

which includes:

• A heap of named objects and threads.

• Threads can call or update object methods, can compare object or thread names for equality,

can create new objects and threads and can discover their own thread name.

• An operational semantics based on the π-calculus [19, 18], and a simple type system.

• A trace semantics as discussed in Section 1.1.

We are not considering many of the more advanced features of the object calculus or the concurrent

object calculus, such as recursive types, object cloning and object locking. This is just for simplicity,

and we do not see any technical problems with incorporating these features into our language.

In another strand of research Di Blasio and Fisher [3] also designed a calculus for modelling

imperative, concurrent object-based systems. As with Abadi and Cardelli’s object calculus and its

various extensions, the emphasis in Di Blasio and Fisher’s work is again on type systems and safety

properties for them.

1.3 Full abstraction

The problem of full abstraction was first introduced by Milner [17], and investigated in depth by

Plotkin [24]. Full abstraction was first proposed for variants of the λ-calculus, but has since been

investigated for process algebras [9], the π-calculus [6, 10], the ν-calculus [23, 14], Concurrent

ML [5, 15], and the immutable object calculus [8].























































1. If C1!C2 ≡ D ‖ E then there exist components such that C1 ≡ D1 ‖ E1 and C2 ≡ D2 ‖ E2 with

D ≡ D1!D2 and E ≡ E1!E2.

2. If C1!C2 ≡ ν(~n : ~T ) .C then there exist components such that C1 ≡ ν(~n1 : ~T1) .C′
1 and C2 ≡

ν(~n2 : ~T2) .C′
2 with (~n : ~T ) = (~n1 : ~T1,~n2 : ~T2) and C′ ≡ C′

1!C′
2.

Proof: Proved by induction on the derivation of C1!C2. ✷

Lemma A.2 If C1!C2



























References

[1] M. Abadi and L. Cardelli. A Theory Of Objcets. Springer-Verlag, 1996.



[17] R. Milner. Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci., 4:1–22, 1977.

[18] R. Milner. Communicating and Mobile Systems. Cambridge University Press, 1999.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses. Inform. and Comput.,

100(1):1–77, 1992.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Colloq. Automata, Languages

and Programming, volume 623 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[21] J.-H. Morris. Lambda calculus models of programming languages. Dissertation, M.I.T., 1968.

[22] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Struc-

tures in Computer Science, 6(5):409–454, 1996.

[23] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically

create local names, or: What’s new? In Proc. MFCS 93, pages 122–141. Springer-Verlag,

1993. LNCS 711.

[24] G. Plotkin. LCF considered as a programming language. Theoret. Comput. Sci., 5:223–256,

1977.

45


