
A Complete Axiomatisation for Timed Automata

Huimin Lin

Laboratory for Computer S
ien
e

Inst. of Software, Chinese A
ademy of S
ien
es

Email: lhm�ios.a
.
n

Wang Yi

Dept. of Computer Systems

Uppsala University

Email: yi�
sd.uu.se

Abstra
t

A proof system of timed bisimulation equivalen
e for timed automata is

presented, based on a CCS-style regular language for des
ribing timed au-

tomata. It
onsists of the standard monoid laws for bisimulation and a set of

inferen
e rules. The judgments of the proof system are
onditional equations

of the form �� t = u where � is a
lo
k
onstraint and t, u are terms denoting

timed automata. The proof of the
ompleteness result relies on the notion

of symboli
 timed bisimulation, adapted from the work on value{passing pro-

esses.

1 Introdu
tion

The last de
ade has seen a growing interest in extending various
on
urren
y theo-

ries with timing
onstru
ts so that real-time aspe
ts of
on
urrent systems
an be

modeled. Among them timed automata [AD94℄ has stood out as a fundamental

model for real-timed systems.

A timed automaton is a �nite automaton extended with a �nite set of real-

valued
lo
k variables. A node of a timed automata is asso
iated with an invariant

onstraint on the
lo
k variables, while an edge is de
orated with a
lo
k
onstraint,

an a
tion label, and a subset of
lo
ks to be reset after the transition. At ea
h node a

timed automaton may perform two kinds of transitions: it may let time pass for any

amount (a delay transition), as long as the invariant is satis�ed, or
hoose an edge

whose
onstraint is met, make the move, reset the relevant
lo
ks to zero, and arrive

at the target node (an a
tion transition). Although a timed automaton has only

�nite number of nodes, due to (real-valued) delay transitions it typi
ally exhibits

in�nite-state behaviour. Two timed automata are timed bisimilar if they
an mat
h

ea
h other's a
tion transitions as well as delay transitions, and their residuals remain

timed bisimilar. The expli
it presen
e of
lo
k variables and resetting, features that

mainly asso
iated with the so-
alled \imperative languages", distinguishes timed

automata from pro
ess
al
uli su
h as CCS, CSP and their timed extensions whi
h

are \appli
ative" in nature and therefore more amenable to axiomatisation. By now

1

most theoreti
al aspe
ts of timed automata have been well studied, but they still

la
k a satisfa
tory algebrai
 theory.

In this paper we shall develop a
omplete axiomatisation for timed automata,

in the form of an inferen
e system, in whi
h the equalities between pairs of timed

automata that are timed bisimilar
an be derived. To this end we �rst propose a

language, in CCS style, equipping it with a symboli
 transitional semanti
s in su
h

a way that ea
h term in the language denotes a timed automaton. The language has

a
onditional
onstru
t �!t, read \if � then t", an a
tion pre�xing a(x):t, meaning

\perform the a
tion a, reset the
lo
ks in x to zero, then behave like t", and a

re
ursion �xXt whi
h allows in�nite behaviours to be des
ribed. The proof system

onsists of a set of inferen
e rules and the standard monoid laws for bisimulation.

Roughly speaking the monoid laws
hara
terize bisimulation, while the inferen
e

rules deal with spe
i�

onstru
ts in the language. The judgments of the inferen
e

system are of the form

�� t = u

where � is a time
onstraint and t, u are terms. Intuitively it means: t and u are

timed bisimilar over
lo
k evaluations satisfying �. A typi
al inferen
e rule takes

the form:

GUARD

� ^ � t = u � ^ : � 0 = u

�� (!t) = u

It performs a
ase analysis on the
onstraint : !t behaves like t when is true,

and like the ina
tive pro
ess 0 otherwise. Note that the guarding
onstraint of

 !t in the
on
lusion is part of the obje
t language des
ribing timed automata,

while in the premise it is shifted to the
ondition part of the judgment in our meta

language for reasoning about timed automata.

A
ru
ial rule, as might be expe
ted, is the one for a
tion pre�xing:

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

Here #

x

and * are post�xing operations on
lo
k
onstraints. �#

x

* is a
lo
k
on-

straint obtained from � by �rst setting the
lo
ks in x to zero (operator #

x

), then

removing up-bounds on all
lo
ks of � (operator *). Readers familiar with Hoare

Logi
 may noti
e some similarity between this rule and the rule dealing with assign-

ment there:

fP [e=x℄g x := e fPg

But here the operator #

x

is slightly more
ompli
ated than substitution with zero,

be
ause
lo
ks are required to in
rease uniformly. Also we need * to allow time to

pass inde�nitely.

A standard way to reasoning with re
ursion is to use, apart from the usual rule

for folding/unfolding re
ursions, the following unique �xpoint indu
tion:

UFI

t = u[t=X℄

t = �xXu

X guarded in u

2

This rule was adopted in [Mil84℄ for a
omplete axiomatisation of bisimulation equiv-

alen
e for regular pure-CCS. Here we use it in a quite di�erent
ontext: terms in our

setting normally
ontain
lo
k variables, namely they are open terms. In spite of this,

it turns out that this rule is still sound and suÆ
ient for a
omplete axiomatisation

of regular behaviour, though the proof is slightly more
ompli
ated than in the pure

al
uli.

The
ompleteness proof relies on the introdu
tion of the notion of symboli
 timed

bisimulation, t �

�

u, whi
h
aptures timed bisimulation in the following sense:

t �

�

u if and only if t� and u� are timed bisimilar for any
lo
k evaluation � satisfying

�. Following [Mil84℄, to show that the inferen
e system is
omplete, that is t �

�

u

implies ` � � t = u, we �rst transform t and u into standard equation sets whi
h

are the synta
ti
al representations of timed automata. We then
onstru
t a produ
t

equation set out of the two and prove that t and u both satisfy this new equation

set, by exploiting the assumption that t and u are symboli
ally timed bisimilar. Due

to the presen
e of

x � 4

l

0

l

1

y := 0

^

y � 3

x � 5

x � 1

x := 0; y := 0

a

b

Figure 1: A Timed Automaton.

Consider the timed automaton of Figure 1. It has two
ontrol nodes l

0

and l

1

and two
lo
ks x and y. A state of the automaton is of the form (l; < s; t >), where

l is a
ontrol node and s and t are non{negative reals giving the values of x and

y. Assuming that the automaton starts to operate in the state (l

0

; < 0; 0 >), it

may stay in node l

0

for any amount of time, as long as the invariant x � 4 of l

0

is satis�ed. During this time the values of x and y in
rease uniformly, at the same

rate. Thus from the initial state, all states of the form (l

0

; < t; t >) with 0 � t � 4

are rea
hable, but only at the states (l

0

; < t; t >), where t � 1, the edge from l

0

to

l

1

is enabled. When following the edge from l

0

to l

1

the a
tion a is performed to

syn
hronize with the environment and the
lo
k y is reset to 0 leading to states of

the form (l

1

; < t; 0 >) where t � 1.

For the formal de�nition, we assume a �nite set A for syn
hronization a
tions

and a �nite set C for real-valued
lo
k variables. We use a; b et
. to range over A

and x; y et
. to range over C. We use B(C), ranged over by �, et
., to denote the

set of
onjun
tive formulas of atomi

onstraints in the form: x

i

1 m or x

i

�x

j

1 n,

where x

i

; x

j

2 C, 12 f�; <;�; >g and m;n are natural numbers. The elements of

B(C) are
alled
lo
k
onstraints.

De�nition 2.1 A timed automaton over a
tions A and
lo
ks C is a

A
tion

a(x):t

tt;a;x

�! t

Choi
e

t

b;a;x

�! t

0

t+ u

b;a;x

�! t

0

Guard

t

 ;a;x

�! t

0

�!t

�^ ;a;x

�! t

0

Re

t[�xXt=X℄

b;a;x

�! t

0

�xXt

b;a;x

�! t

0

� � � tt and t � a(x):t

0

tt;a;x

�! t

0

. Then (a(x):t

0

)�

a

�! t

0

�fx := 0g by a
tion and

� j= �.

� � � �

0

^ and t0 x

In the following, \atomi

onstraint" always means \atomi

onstraint over C

with
eiling N". Note that given two timed automata there are only �nite number

of su
h atomi

onstraints. We shall use
 to range over atomi

onstraints.

A
onstraint, or zone, is a boolean
ombination of atomi

onstraints. A
on-

straint � is
onsistent if there is some � su
h that � j= �. Let � and be two

onstraints. We write � j= to mean � j= � implies � j= for any �. Note that the

relation j= is de
idable.

A region
onstraint, or region for short, over n
lo
k variables x

1

; : : : ; x

n

is a

onsistent
onstraint
ontaining the following atomi

onjun
ts:

� For ea
h i 2 f1; : : : ; ng either x

i

= m

i

or m

i

< x

i

< m

i

+ 1 or x

i

> N ;

� For ea
h pair of i; j 2 f1; : : : ; ng, i 6= j, su
h that both x

i

and x

j

are not greater

than N , either x

i

�m

i

= x

j

�m

j

or x

i

�m

i

< x

j

�m

j

or x

j

�m

j

< x

i

�m

i

.

where the m

i

in x

i

� m

i

of the se
ond
lause refers to the m

i

related to x

i

in the

�rst
lause. In words, m

i

is the integral part of x

i

and x

i

�m

i

its fra
tional part.

Given a �nite set of
lo
k variables C and a
eilingN , the set of region
onstraints

over C is �nite and is denoted RC

C

N

. In the sequel, we will omit the sub- and super-

s
ripts when they
an be supplied by the
ontext.

Fact 1 Let � be a region
onstraint. If � j= � and �

0

j= � then

� For all i 2 f1; : : : ; ng, if �(x

i

) � N then b�(x

i

)
 = b�

0

(x

i

)
.

� For any i; j 2 f1; : : : ; ng, i 6= j,

{ f�(x

i

)g = f�(x

j

)g i� f�

0

(x

i

)g = f�

0

(x

j

)g and

{ f�(x

i

)g < f�(x

j

)g i� f�

0

(x

i

)g < f�

0

(x

j

)g.

where bx
 and fxg are the integral and fra
tional parts of x, respe
tively.

That is, two valuations satisfying the same region
onstraint must agree on their

integral parts as well as on the ordering of their fra
tional parts.

Lemma 3.1 Suppose that � is a region
onstraint and a zone. Then either �)

or �) : .

Proof: We �rst transform into disjun
tive normal form: =

W

i

V

j

e

ij

where

ea
h e

ij

is an atomi

onstraint. Now ^ � =

W

i

V

j

(e

ij

^ �). It is easy to see, by

examining the possible forms of e

ij

, that ea
h e

ij

^ � is either equal to � or false.

Hen
e ^ � is either equal to � or false. In the former
ase we have �) , and in

the later
ase we get �) : . 2

A

ording to this lemma, a region is either entirely
ontained in a zone, or is

ompletely outside a zone. In other words, regions are the �nest polyhedra that
an

be des
ribed by our
onstraint language.

Fact 2 Let t, u be two terms with disjoint sets of
lo
k variables and � a region

onstraint over the union of the two
lo
k sets. Suppose that both � and �

0

satisfy �.

Then t� � u� i� t�

0

� u�

0

.

A
anoni
al
onstraint is a disjun
tion of regions. Given a

where *

0

is de�ned

equalities between
lo
k variables (the e

ij

omponent in the above de�nition), whi
h

guarantees the \same rate" requirement when su
h
onstraints are over the union

of the two
lo
k sets.

Given a
onstraint �, a �nite set of
onstraints � is
alled a �-partition if

W

� = �.

A �-partition � is
alled �ner than another su
h partition 	 if �
an be obtained

from 	 by de
omposing some of its elements. By the
orollary to Lemma 3.1,

RC(�) is a �-partition, and is the �nest su
h partition. In parti
ular, if � is a region

onstraint then f�g is the only partition of �.

De�nition 3.4 A
onstraint indexed family of symmetri
 relations over terms S =

fS

�

j � is *�
losed g is a symboli
 timed bisimulation if (t; u) 2 S

�

implies

1. � j= Inv(t), Inv(u) and

2. whenever t

 ;a;x

�! t

0

then there is a Inv(t) ^ � ^ -partition � su
h that for

ea
h �

0

2 � there is u

0

;a;y

�! u

0

for some

0

; y and u

0

su
h that �

0

)

0

and

(t

0

; u

0

) 2 S

�

0

#

xy

*

.

We write t �

�

u if (t; u) 2 S

�

2 S for some symboli
 bisimulation S. 2

Note that there is no
lause for delay transitions in the de�nition, be
ause delays

are en
oded in the *-
loseness property of the indexing
onstraints.

The use of a partition when mat
hing a symboli
 transition is essential. Without

it we will not be able to
hara
terise timed bisimulation using symboli
 transitions.

For example,
onsider the two timed automata t

1

and t

2

below (we have omitted the

empty resets). They are apparently timed bisimilar. But the symboli
 transition

t

2

tt;a;fg

�!
an not be entirely mat
hed by either of the two symboli
 transitions from t

1

.

We must use a partition, say fx � 1; x > 1g: t

1

an mat
h the symboli
 transition

from t

2

using its left bran
h over the
onstraint x � 1, and the right bran
h over

x > 1.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Proof: (=)) Assume (t; u) 2 S

�

2 S for some symboli
 bisimulation S. De�ne

R = f (t�; u�) j there exists some � su
h that � j= � and (t; u) 2 S

�

2 S g

We show R is a timed bisimulation. Suppose (t�; u�) 2 R, i.e. there is some � su
h

that � j= � and (t; u) 2 S

�

. By the �rst
laus in De�nition 3.4, we have � j= Inv(t)

if and only if � j= Inv(u).

� t�

a

�! t

0

�

0

. By Lemma 2.3 there are ; x su
h that � j= ^ Inv(t), �

0

=

�fx := 0g and t

 ;a;x

�! t

0

. So there is a � ^ -partition � with the properties

spe
i�ed in De�nition 3.4. Sin
e � j= � ^ , � j= �

0

for some �

0

2 �. Let

u

0

;a;y

�! u

0

be the symboli
 transition asso
iated with this �

0

, as guaranteed by

De�nition 3.4. Then �

0

)

0

and (t

0

; u

0

) 2 S

�

0

#

xy

*

. Sin
e � j=

0

^ Inv(u),

u�

a

�! u

0

�fy := 0g. By Lemma 3.2, �fxy := 0g j= �

0

#

xy

. By Lemma 3.3,

�fxy := 0g j= �

0

#

xy

*. Therefore (t

0

�fxy := 0g; u

0

�fxy := 0g) 2 R. Sin
e

t

0

�fxy := 0g � t

0

�fx := 0g and u

0

�fxy := 0g � u

0

�fy := 0g, this is the same

as (t

0

�fx := 0g; u

0

�fy := 0g) 2 R.

� t�

d

�! t(� + d). Sin
e � is *-
losed, � + d j= �. Then � + d j= Inv(u) and

hen
e u�

d

�! u(�+ d). Therefore (t(� + d); u(�+ d)) 2 R.

((=) Assume t� � u� for any � j= �

0

^ Inv(t) ^ Inv(u), i.e. (t�; u�) 2 R for some

timed bisimulation R, we show t �

�

0

u as follows. For ea
h *�
losed �, de�ne

S

�

= f (t; u) j 8�

0

2 RC(�); (t�; u�) 2 R for any � j= �

0

^ Inv(t) ^ Inv(u) g

and let S = fS

�

j � is * �
losed g. Then (t; u) 2 S

�

0

. S is well-de�ned be
ause

of Fa
t 2. We show S is a symboli
 bisimulation. Suppose (t; u) 2 S

�

. Consider

any �

0

2 RC(�). There exists � j= �

0

^ Inv(t) ^ Inv(u) su
h that (t�; u�) 2 R.

Sin
e �

0

is a region it must be entirely
ontained in Inv(t) ^ Inv(u), i.e.

They are so-
alled \stru
tural rules" used to \glue" pie
es of derivation together.

Taking �

1

= �

2

PARTITION spe
ialises to a useful rule

CONSEQUENCE

�

1

� t = u

�� t = u

� j= �

1

Let us write ` � � t = u to mean � � t = u
an be derived from this proof

system.

Some useful properties of the proof system are summarised in the following

proposition:

Proposition 4.1 1. ` �!(!t) = � ^ !t

2. ` t = t+ �!t

3. If � j= then ` �� t = !t

4. ` � ^ � t = u implies ` �� !t = !u

5. ` �!(t+ u) = �!t+ �!u

6. ` �!t+ !t = � _ !t

7. For any t and u, ` f�gt = f�gu

Proof: We only give proofs for 1, 4 and 7, leaving the others to the readers.

We �rst prove a le/R123 08a:

S1 X + 0 = X S2 X +X = X

S3 X + Y = Y +X S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Equational Axioms

whi
h
an be settled by EQUIV (plus CONSEQUENCE) and ABSURD, respe
-

tively.

4. By GUARD, ` �� !t = !u
an be redu
ed to

� ^ � t = �!u and � ^ : � 0 = �!u

The se
ond subgoal is an instan
e of (1). For the �rst one we apply GUARD again

obtaining

(� ^) ^ � t = u and (� ^) ^ : � t = 0

Now the �rst subgoal follows from the hypothesis and the se
ond from ABSURD.

7. It is suÆ
ient to prove ` f�gt = f�g0 for any t. By INV this
an be redu
ed to

` �� t = f�g0 and ` :� � f�g0 = f�g0. The �rst subgoal is settled by ABSURD

while the se
ond by EQUIV. 2

The following lemma shows how to \push" a
ondition through an a
tion pre�x:

Lemma 4.2 ` �� a(x):f gt = a(x):f g�#

x

*!t.

Proof: By ACTION this
an be redu
ed to

�#

x

*� f gt = f g�#

x

*!t

An appli
ations of INV gives two subgoals:

�#

x

* ^ � t = f g�#

x

*!t (4)

�#

x

* ^ : � f�g0 = f g�#

x

*!t (5)

Apply INV again to (4) we get

�#

x

* ^ ^ � t = �#

x

*!t and �#

x

* ^ ^ : � t = f�g0

the �rst follows from Proposition 4.1.3, while the se
ond from ABSURD.

(5)
an be settled similarly by an appli
ation of INV followed by EQUIV and

ABSURD. 2

The UFI rule, as presented in Figure 4, is un
onditional. However, a
onditional

version
an be derived:

Proposition 4.3 Suppose X is guarded in u. Then from ` �� t = u[�!t=X℄ infer

` �� t = �xX�!u.

15

Proof: Assume ` � � t = u[�!t=X℄. By Proposition 4.1.4 we have ` �!t =

�!u[�!t=X℄, i.e.

` �!t = (�!u)[�!t=X℄

Sin
e X is guarded in u, it is also guarded in �!u. By UFI, ` �!t = �xX�!u.

Hen
e

` �!t

REC

= (�!u)[�xX�!u=X℄

= �!u[�xX�!u=X℄

= �!(�!u)[�xX�!u=X℄

REC

= �!�xX�!u

Therefore, by Proposition 4.1.4 again, ` �� t = �xX�!u. 2

The rule PARTITION has a more general form:

Proposition 4.4 Suppose 	 is a �-partition and ` � t = u for ea
h 2 	, then

` �� t = u.

Proof: By indu
tion on the size of 	. The base
ase when 	
ontains only one

element is trivial. For the indu
tion step, assume the statement of the proposition

holds for �-partitions of size k and let 	 = f

i

j 1 � i � k+1 g. Set 	

0

= f:

k+1

^

i

j 1 � i � k g. Sin
e `

i

� t = u, by CONSEQUENCE ` :

k+1

^

i

� t = u.

Therefore by the indu
tion hypothesis,

`

_

	

0

� t = u

From this and the assumption `

k+1

� t = u, by PARTITION we obtain

`

k+1

_

_

	

0

� t = u

Sin
e

k+1

_

_

	

0

=

k+1

_(:

k+1

^

_

1�i�k

i

) =

_

1�i�k+1

i

=

_

	 = �, this
ompletes

the indu
tion. 2

In the rest of this se
tion we dis
uss the soundness of the proof system. First

we show that the rule UFI is sound with respe
t to �. Following [Mil89℄ we use the

te
hnique of bisimulation up to.

De�nition 4.5 A symmetri
 relation R is a timed bisimulation up to � if (p; q) 2 R

implies

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and (p

0

; q

0

) 2 R.

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and (p

0

; q

0

) 2� R �.

2

Note that the derivatives of delay transitions are required to be in the same relation,

while those of a
tion transitions are allowed to be related modular �.

16

Lemma 4.6 If R is a timed bisimulation up to � then R ��.

Proof: Let (p; q) 2 R and p

�

�! p

0

. We need to show that there is some q

0

su
h

that q

�

�! q

0

and (p

0

; q

0

) 2 R. The
ase when � is an a
tion is settled in the same

way as in the proof of Proposition 6, Se
tion 4.3, [Mil89℄. The
ase when � is a

delay follows dire
tly from De�nition 4.5. 2

Lemma 4.7 If X is guarded in v and v[t=X℄

a

�! t

0

, then t

0

has the form v

0

[t=X℄,

and moreover, for any u, v[u=X℄

a

�! v

0

[u=X℄.

This lemma
on
erns only a
tion transitions and its proof is the same as that of

Lemma 13, Se
tion 4.5, [Mil89℄.

Proposition 4.8 Suppose fv(v) � fXg and X is guarded in v. If t� � v[t=X℄�

and u� � v[u=X℄� then t� � u�.

Proof: We show the relation

R = f (v[t=X℄�; v[u=X℄�) j fv(v)

De�nition 4.10 Two pro
esses p and q are timed bisimular up to d

0

2 R

�0

, written

p �

d

0

q, if for any d su
h that 0 � d � d

0

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and p

0

�

� q

0

,

� whenever q

d

�! q

0

then p

d

�! p

0

for some p

0

and p

0

�

� q

0

.

where p

�

� q is de�ned thus

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and p

0

� q

0

,

� whenever q

a

�! q

0

then p

a

�! p

0

for some p

0

and p

0

� q

0

.

2

The di�eren
e between timed bisimulation up to d and the standard notion of timed

bisimulation only
on
erns initial delay transitions: in timed bisimulation up to d

two pro
esses are required to mat
h only those initial delay transitions

A term t provably �-satis�es an equation set E if there exist a ve
tor of terms

f t

i

j i 2 I g, ea
h t

i

being of the form f

0

i

gt

0

i

, and a ve
tor of
onditions f�

i

j i 2 I g

su
h that �

1

= �, ` �� t

1

= t, �

i

j= Inv(u

i

),

0

i

, and

` �

i

� t

i

= u

i

[f

0

i

g(�

i

!t

0

i

)=X

i

ji 2 I℄

for ea
h i 2 I. We will simply say \t provably satis�es E" when �

i

= tt for all i 2 I.

Proposition 5.1 For any guarded term t with free pro
ess variables W there ex-

ists a standard equation set E, with free pro
ess variables in W, whi
h is provably

satis�ed by t. In parti
ular, if t is
losed then E is also
losed.

Proof: By indu
tion on the stru
ture of t. The only non-trivial
ase is re
ursion

when t � �xXt

0

with X guarded in t

0

. By indu
tion there is a standard equation

set E

0

: fX

i

= u

i

j i 2 I g with free pro
ess variables in FV (t) [fXg and t

0

i

: s

su
h that ` t

0

= t

0

1

and

` t

0

i

= u

i

[t

0

i

=X

i

ji 2 I℄

We may assume that X is di�erent from any X

i

. Let v

i

= u

i

[u

1

=X℄ for ea
h i. Note

that sin
e X is under an a
tion pre�xing in t

0

, it does not o

ur free in u

1

. Hen
e

v

1

= u

1

. Consider the equation set

E : fX

i

= v

i

j i 2 I g

To show t satis�es E, set t

i

= t

0

i

[t=X℄. Then

` t = �xXt

0

= �xXt

0

1

REC

= t

0

1

[�xXt

0

1

=X℄

= t

0

1

[t=X℄

= t

1

Now

` t = t

0

1

[t=X℄

= u

1

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

1

[t

0

i

[t=X℄=X

i

ji 2 I℄

= u

1

[t

i

=X

i

ji 2 I℄

and

` t

i

= t

0

i

[t=X℄

= u

i

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

i

[t; t

0

i

[t=X℄=X;X

i

ji 2 I℄

= u

i

[t; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

[t

i

=X

i

ji 2 I℄; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

=X℄[t

i

=X

i

ji 2 I℄

= v

i

[t

i

=X

i

ji 2 I℄

2

20

Proposition 5.2 For
losed terms t and u, if t �

�

u then there exist a �

0

su
h that

�) �

0

and a standard,
losed equation set E whi
h is provably �

0

-satis�ed by both

t and u.

Proof: It easy to see that, using ruleUNG, any unguarded term
an be transformed

into a guarded one, so we may assume both t and u are guarded.

Let the sets of
lo
k variables of t; u be x; y, respe
tively, with x \ y = ;. Let

also E

1

and E

2

be the standard equation sets for t and u, respe
tively:

E

1

: fX

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

j i 2 I g

E

2

: fY

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):Y

g(j;l)

j j 2 J g

So there are t

i

� f�

0

i

gt

0

i

; u

j

� f

0

j

gu

0

j

with ` t

1

= t, ` u

1

= u su
h that j= �

i

, �

0

i

,

j=

i

,

0

i

, and

` t

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):t

f(i;k)

` u

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):u

g(j;l)

Without loss of generality, we may assume a

ik

= b

jl

= a for all i; k; j; l.

For ea
h pair of i; j, let

�

ij

= f� 2 RC(xy) j t

i

�

�*

u

j

g

Set �

ij

=

_

�

ij

. By the de�nition of �

ij

, �

ij

is the weakest
ondition over whi
h

t

i

and u

j

are symboli
ally bisimilar, that is,) �

ij

for any su
h that t

i

�

u

j

.

In parti
ular, �) �

11

. Also for ea
h � 2 �

ij

, � j= Inv(t

i

) , Inv(u

j

), i.e.,

� j= �

0

i

,

0

j

, hed
(a)Tj
/R257 0.12 Tf
6.12031 Td
(j)Tj
/32031 Td
()Tj
/R191 0.191 0.12 Tf
12.4801 0 Td
(u)Tj
/R12(with)Tj
/R193 0.12 Tf
26.6398 0 Td
(`)Tji;6 1.8 Td
(i)Tj
/R193 0.12 Tf
6.71992 -1.8 Td
(,)Tj2 Tf
8.04023 -1.8 d
(,)Tj
/R193 0.12 Tf
7.2 0 Td
(`)Tj
/0.12 Tf
8.0399/R123 0j
19.43 Td
(trans8 Td
(j)Tj
/R123 0.12 Tf
7.68008 -1.8 Td
(=)Tj
/R193 0.57 0
(,)Tj
/R
(for)Tj
 23 0.12 Tf
078 2 0 Td
(j)Tj�.92031 Td
(u)Tj
/R2d
(f)Tj
0.12 Tf
9I.3199 0 Td
(parti
ul1
/R257 0.8 Td
[(j)�f
0 7.31992 Td
(i)Tj
)Tj
66 77 0.12 Tf
8.4 1.8 Td
(ij)Tj
/R1)Tj
/2,let

�)a all2RC=ik

):X

f j

By

Let w

m+1

be �xX

m+1

�

m+1

!v

m+1

. We have

` �

m+1

� t

m+1

= w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

By Proposition 4.1,

` �

m+1

!t

m+1

= �

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

Now, writing w

i

for v

i

[�

m+1

!w

m+1

=X

m+1

℄, we have

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!t

m+1

=X

m+1

℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄=X

m+1

℄

= v

i

[�

m+1

!w

m+1

=X

m+1

℄[�

i

!t

i

=X

i

j1 � i � m℄

= w

i

[�

i

!t

i

=X

i

j1 � i � m℄

This shows t provably �-satis�es the equation set

E

0

:

in the timed world. This result agrees with the previous works on proof systems

for value-passing pro
esses [HL96℄ and for �-
al
ulus [Lin94℄, providing a further

eviden
e that the four monoid laws
apture the essen
e of bisimulation.

The

[DAB96℄ P.R. D'Argenio and Ed Brinksma. A Cal
ulus for Timed Automata (Ex-

tended Abstra
t). In FTRTFTS'96, LNCS 1135, pp.110-129. Springer{

Verlag. 1996.

[HL95℄ M. Hennessy and H. Lin. Symboli
 bisimulations. Theoreti
al Computer

S
ien
e, 138:353{389, 1995.

[HL96℄ M. Hennessy and H. Lin. Proof systems for message-passing pro
ess alge-

bras. Formal Aspe
ts of Computing, 8:408{427, 1996.

[Lin94℄ H. Lin. Symboli
 bisimulations and proof systems for the �-
al
ulus. Re-

port 7/94, Computer S
ien
e, University of Sussex, 1994.

[LW00℄ H. Lin and Y. Wang. A proof system for timed automata. Fossa
s'2000,

LNCS 1784. Mar
h 2000.

[Mil84℄ R. Milner. A
omplete inferen
e system for a
lass of regular behaviours.

J. Computer and System S
ien
e, 28:439{466, 1984.

[Mil89℄ R. Milner. Communi
ation and

