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Abstract

This paper studies the decidability and small model property of process

equations of the form
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where P;Q are �nite state processes, X

i

; Y
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are process variables, and C
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and Y
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respectively. It shows

that, when n + m > 1, the equation problem is not decidable and does

not have small model property for any equivalence relation � which is at

least as strong as complete trace equivalence but not stronger than strong

bisimulation equivalence.

1 Introduction

This paper examines small model property and decidability of equations in process

algebras [Mil80, Mil89, Hoa85, BK85, Bou85, Hen88]. In general, process equations

have the following form
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where C;D are arbitrary process contexts, X

1

; : : : ;X

n

and Y

1

; : : : ; Y

m

are process

variables, � is some equivalence relation on processes. Some well studied equiva-

lence relations on processes are strong and weak bisimulation equivalences� and �

�
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[Mil80, Mil89], branching bisimulation equivalence�

b

[vGW89], testing equivalence

[dNH83], failure equivalence [BHR84], GSOS trace congruence or

2

3

{bisimulation

equivalence [BIM88, LS89], and 2{nested simulation equivalence [GV89]. Equation

(1) is said to be solved by processes P

1

; : : : ; P

n

and Q

1

; : : : ; Q

m

if the following

equivalence holds
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In this case we say that (1) is solvable. A type of equation is said to be decidable

if the P



where Q is a �nite state process and C(X) is linear in X:

C(X) � Q (3)

Results in [ZIG87, SI91, Liu92] show that, for many equivalence relations � (in-

cluding �, �, and �

b

), Q has a characteristic formula F

�

Q

of the modal �{calculus

such that, for any process





Now, the blank tape in its initial state is just a row of cells in state S

l

(b). The

following recursive de�nition gives the blank tape T

T

d

= (S

l

(b)[link=sr]jT [link=sl])nlink

The construction is pictured in Figure 1, where A and A are in fact two sets of ports

named by the letters and barred letters in the alphabet of the Turing machine.

A Turing machine tape can also be described by the following in�nite set of

equations about B(s

1

; s

2

), where s

1

2 (A[fbg)

�

is the contents of the tape between

the end of the tape and the currentS



Lemma 2.2 When � is �

t

, equation (4) has unique solution modulo �

t

.

Proof For any process P , lets write D

n

(P ) for D(D

n�1

(P )) when n > 0 and

D

0

(P ) for P . Notice that if D

n

(P )

s

=) R and



still give a better idea how R actually works. However, these � 's are necessary in

order to satisfy the equation in the �rst part of Lemma 2.4 which enables us to

derive more general conclusions. Otherwise, using the simpler de�nition, we can

only show a weaker version of that equation with � in place of �. From now on

we will write C(X;Y ) for (X[f

1

]jRjY [f

2

])nL

1

[ L

2

. It is not di�cult to see that a

necessary condition for C(P;Q) to be always capable of doing syn and nothing else

(no err) is that whatever 24(rom)]TJ
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3 Main Results

With the preparation in the last section, we are now ready to show the main results

of the paper, namely that many equation problems are undecidable and do not have

small model property.

Theorem 3.1 For any � such that �����

t

, both the unary 1 � 1 equation

problem and the binary 1 � 1 equation problem are not decidable and do not have

the small model property.

Proof It is su�cient to construct some e�ective reductions from the divergence

problem of Turing machines, which is well known to be not semi{decidable. There is

a systematic way of constructing a �nite state processM

i

which simulates the �nite{

state control mechanism of the i{th Turing machine for each i. Thus (M

i

jT )nL

will simulate the i{th Turing machine such that (M

i

jT )nL � �

!

if and only if

the i{th Turing machine does not halt on a blank tape, and also that (M

i

jT )nL

outputs something if and only if the i{th Turing machine halts, where �

!

is the

process which only performs internal actions for ever. Now we can show that the

i{th Turing machine diverges if and only if the following unary 1 � 1 equation is

solvable when �����

t

and a 6= b

a:(M

i

jX)nL+ b:X � a:�

!

+ b:D(X) (5)

For one direction, suppose the i{th Turing machine diverges, that is to say

(M
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!

. Since T � D(T ), and ���, T solves equation (6).

For the converse direction, suppose T

0

solves equation (6). Because ���

t
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a 6= b, in this case (M
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T , thus
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, and the i{th Turing machine diverges on a blank

tape (otherwise (M

i

jT )nL should be able to output something).

Similarly, it is easy to work out that the i{th Turing machine diverges if and

only if the following binary 1 � 1 equation is solvable when �����

t

and a; b; c

are three di�erent actions

a:(M

i

jX)nL+ b:X + c:D(X) � a:�

!

+ b:Y + c:Y (6)

Thus we showed e�ective reductions from the divergence problem of Turing

machines to the unary and binary 1 � 1 equation problems. So the unary 1 � 1

equation problem and the binary 1 � 1 equation problem are not semi-decidable

and thus not decidable.

In order to prove that a type of equation does not have the small model property,

we only need to �nd a solvable equation of that type and show that any solution

to the equation has in�nite states. It is easy to see from Lemma 2.2 and Lemma

2.3 that, when ���

t

, equation (4) is a solvable unary 1 � 1 equation which only

has in�nite state solutions. Also for the same reason, when ���

t

and a 6= b, the

following is a solvable binary 1 � 1 equation which only has in�nite state solutions.

a:X + b:D(X) � a:Y + b:Y
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but only have in�nite state solutions
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Thus both unary and binary 2 � 0 equation problems do not have small model

property. 2

4 Conclusion and Related Works

In the last section we showed that four types of n � m equation problems are

not decidable and do not have small model property for any equivalence relation

which is as least as strong as complete trace equivalence (this can be relaxed to

trace equivalence in the case of 1 � 1) but not stronger than strong bisimulation

equivalence. These four types of equation problems are the unary and binary 1 � 1

equation problems and the unary and binary 2 � 0 equation problems. Undecid-

ability of 1 � 1 equation problems is somewhat expected because recursion can be

coded into such an equation problem, but undecidability of 2 � 0 equation problems

is rather unexpected. This shows the computation power of communication.

The negative results about these four basic types of equation problems have very

general implications. Because any k{ary n � m equation problem with m+ n > 1

would have one of these basic problems as special case, such k{ary n � m equation

problem is surely undecidable and does not have the small model property if � is



Another interesting line of research is to identify some decidable subclass of k{

ary n � m equation problems. Here the results of [MM90, Mol89, CHM93b] about

unique decomposition of processes may provide some clue. To be somewhat more

precise, results in [MM90, Mol89, CHM93b] show that for certain processes P , there

exists a unique decomposition P

1

jj : : : jjP

m

where jj is the merge operator which is

like j but without communication. Thus for such process P , we can decompose this

kind of k{ary n � 0 equation

C

1

(X

1

)jj : : : jjC

n

(X

n

) � P

into a set of 1 � 0 equations. It is easy to see that the possibility of such de-

compositions are
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