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Figure 1: Low, but non-zero, epistasis is associated with a search space that is possible, but non-trivial.

ended if the environment itself alters over time, per-

haps in response to the evolution of the animat itself.

The classic case is the Red Queen (or Arms Race) phe-

nomenon of coevolution of di�erent species interacting

with each other, where one can expect over time both

the phenotype complexity and the genotype length to

increase.

The notion of a search space is a metaphor which is

usually a useful one. It does, however, imply a space

of pre-de�ned extent, with a pre-de�ned or recognizable

goal. In the natural world, tempting though it may be

for any one species to think of evolution as a 4 billion

year search for a goal of something very like them, it

is evident that any such notion of a goal can only be a

posteriori. So in order to distinguish the space of possi-

bilities that a species can move in from that of a conven-

tional search space, I shall use the term SAGA space
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.

This corresponds to the acronym for Species Adaptation

Genetic Algorithms, the altered and extended version of

GAs necessary to deal with such a space.

2 Variable lengths in GAs

Variable length genotypes have been used in GAs in,

for instance, Messy GAs (Goldberg et al. 1990), LS-

1 classi�ers (Smith 1980), Koza's genetic programming

(Koza 1990). The �rst of these in fact uses an underly-

ing �xed-length representation. The analyses o�ered in

the other two examples do not satisfactorily extend the

notion of a schema such that schemata are preserved by

the genetic operators.

For instance, Koza's genetic programming (Koza

1990) uses populations of programs which are given in

the form of LISP S-expressions; these can be depicted as

rooted point-labeled trees with ordered branches. The

primary genetic operator of crossover, or recombination,

swaps complete sub-trees between the parents, and if

these sub-trees are of di�erent size then the o�spring

will have genotypes of di�erent lengths from their par-

ents.

Koza suggests that the equivalent of a schema in the

search space of such programs can be speci�ed initially

by any one speci�c sub-tree. Since the set of all potential

programs containing that sub-tree is in�nite, Koza �nds

it necessary to partition it into �nite subsets indexed
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\Saga : : : story of heroic achievement or adventure; series of

connected books giving the history of a family etc. [Old Norse =

narrative]." Concise Oxford Dictionary.

by the length of the program, and it is these subsets

that are considered as schemata. The number of occur-

rences in the reproductive pool of examples of a particu-

lar schema which, as sampled in the parental pool, shows

above-average �tness, will indeed tend to increase. But

this does not cater for the fact that the crossover oper-

ator will in general turn the o�spring into programs of

di�erent lengths, and hence disrupt the schema which

has been de�ned by program length. A possible way to

minimize this disruption would be to restrict the pos-

sible variations in length to only minimal changes, and

indeed this will be echoed in the conclusions reached

further on in this paper.

The obvious way to extend the crossover operator

from �xed-length to variable-length genotypes is by ran-

domly choosing di�erent crossover positions for each of

the two parents; an o�spring may then inherit two short

portions, or two long portions, and in general will have

a genotype of signi�cantly di�erent length. It will be

shown that this approach is awed.

3 Epistasis

A gene is the unit of analysis in determining the phe-

notype, and hence its �tness, from the genotype; it is

coded for by a small subsection of the genotype. The

term epistasis refers to the linkage between genes on the

genotype, such that the expression of one gene modi�es

or over-rules the expression of another gene.

If there is no epistasis, in other words if the �tness

contribution of each element on the genotype is unaf-

fected by the values of any of the others, then optimiza-

tion can be carried out independently on each element;

simple





is a large population of �xed size simultaneously sam-

pling di�erent mutants, and the population then moves

as a whole to the �ttest of any improved variant encoun-

tered. It is shown that the above result on waiting times

remains almost unchanged.

This search process is of course very di�erent from

that analysed in conventional GAs, where a population

of points e�ectively spans the search space, and recom-

bination allows e�ective moves to predominate. The dis-

tinction between these two types of search process must

be kept in mind when we turn to looking at variable

length genotypes.

6 Variable length genotypes

Let us spell out some assumptions about a genetic sys-

tem with variation in the length of genotypes, within

which many di�erent types of representation, or map-

ping from genotype to phenotype to �tness, could be

allowed.

� Firstly, it is assumed that the genotype can be anal-

ysed in terms of a number of small building blocks, or

genes, that are coded for individually on it; possibly

by a single symbol, or a sequence of symbols. These

genes can be uniquely identi�ed, either by their posi-

tion by reference to an identi�ed end of the genotype,

as in conventional GAs; or by an attached tag or tem-

plate, such as those used in messy GAs (Goldberg et

al. 1990). Longer genotypes will code for genes that

are not present at all on shorter ones.

� Secondly, it is assumed that each gene makes a sepa-

rate additive contribution to the �tness of the whole;

but that the contribution of any one gene can be

modi�ed by epistatic interactions with a number K

of the other genes. This number K is less than the

total number of genes available, otherwise the �tness

landscape would be uncorrelated.

� Thirdly it is assumed that the total of all these ad-

ditive contributions is then normalized in some way

such that the �nal �tness remains within some pre-

de�ned bound regardless of how many genes there

are.

This last condition reects the fact that any �tness

function is only relevant in so far as it a�ects the selec-

tion process. On average in the long term each member

of a viable population will be replaced by just one o�-

spring. Less than one and the population is heading for

extinction, more than one implies exponential growth.
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Figure 3: The progress of the always compact course of a species; the z axis indicates both time and the (loosely

correlated) number of dimensions of the current search space. The x and y axes represent just two of the current

number of dimensions.

The possibility of splitting into separate species, and of extinction, are indicated in the sketch, although not here

discussed.

� Thereupon the traditional GA operators of crossover

and mutation will take over, and Holland's Schema

Theorem will be applicable to this phase of the

search.

� Those applications of the change-length operator

which result in minimal changes of length will be

moves on a correlated landscape, and therefore are

feasible even if major changes are increasingly un-

likely.

� If there are selectionary pressures which encourage

the genotype lengths to increase, the population will

become a nearly-converged `species', with an almost

uniform length that increase in small steps.
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7 SAGA and the Schema Theorem

A schema de�nes a subset of possible genotypes which

share the same values at a speci�ed number of genes.

If there is no upper limit to the possible length of the

genotype, these subsets will be in�nite in size, and esti-

mates of the `average �tness' of a schema based on any

�nite sample become problematical.

We might be tempted to avoid this by saying, in this
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model simulation above is the most trivial such opera-

tor, and depends on the identity of any gene being given

by its position relative to one end of the genotype. Lind-

gren's (Lindgren 1991) doubling operator uses a repre-

sentation which has this same dependency on position.

If the identity of a gene is given by a tag, or by

template-matching as seems to happen in the real world

of DNA, then absolute positions of genes on the geno-

type need not be maintained. This allows for duplication

of a section of the genotype, after which mutations can

di�erentiate the duplicated parts. The crossover opera-

tor can still be used in a fairly homogeneous population

with slight variations in genotype length, although given

any random crossover point in one parent, a `sensible'

corresponding crossover point in the other parent must

be chosen. This can be uniquely de�ned as that point

(or in some cases, any of a contiguous group of points)

which maximises the longest common subsequences on

both sides of the crossover. A version of the Needleman

and Wunsch algorithm makes this computationally fea-

sible (Needleman and Wunsch 1970, Sanko� 1972).

12 Conclusions

With �xed-length genotypes one can a�ord to think in

terms of a �xed, pre-de�ned search space with a �nite

number of dimensions which, even if it is immense, is at

least theoretically knowable by God or Laplace.

When one allows genotypes to vary in length the

search space is potentially in�nite and it stops making

sense to think of it as prede�ned. Nevertheless, in the

real world, evolution has taken place in such a fashion

that we have very distant ancestors whose genotypes

were much shorter than ours; the problems we face are

not the problems the02(ary)]Tnsc.nbe.

When lbkding at
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