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Abstract

Computationalism presupposed a modular-

functional analysis of cognitive behaviour, and its





systems that detect pheromones, the presence of the af-

fordance that the pheromone signals is proportional to

the activity of a local set of receptor cells. In contrast,

when an odour is detected by an olfactory bulb it pro-

duces an oscillatory pattern that is distributed across a

very wide area [44]. How can neural mechanisms evolve,

or learn, to use such general sensory systems to reliably

detect the presence of an a�ordance?

In such cases, the more successful mechanisms will be

those that are better able to generalise from one case of

a behavioural regularity to another. Consider shift in-

variance. In this case the regularity required is a similar

response to an image that may be presented at di�er-

ent positions on a retina. It would be possible to teach,

or evolve, a Type II mechanism to respond suitably to

a number of particular image presentations. However,

since it is a Type II mechanism then the way in which

it achieves these responses may have nothing in common

with each other: the behavioural regularity may not be

due to a regularity in the underlying mechanism.

This mechanism is likely to be robust against certain

changes in input: the addition of noise to the input would

only change each input channel by a small amount, and

thus we may expect the response of the mechanism to be

similar. However other changes, such as moving the im-

age on the retina, result in each input channel changing

by a large amount | spots that were dark will now be

light, and vice versa. There is no reason why a previously

successful mechanism would produce similar behaviour

given such di�erent novel inputs. By contrast, a Type

I solution would, by de�nition, involve some functional

element that responds similarly to the same pattern re-

gardless of its particular position. Such a solution, if it

can be found, will generalise more robustly and will thus

be favoured by evolution or a learning regime.

For example, one possible (though completely arti�-

cial) Type II solution to learning shift invariance would

be a look-up table that lists a number of di�erent reti-

nal inputs and their required responses. This solution is



active perception, a sensor morphology closely tied to

the structure of the environment, and a representational

architecture in order to produce adaptive behaviour.

The evolutionary pressure to generalise behaviour thus

produces a pressure to localise function. Thus we �nd

that the most robust, stereotyped, behaviours are pro-

duced by the most functionally specialised mechanisms.

For example, sensory-motor behaviours, such as saccades

or �xation movements, that have to be very fast and re-

liable tend to be produced via very clearly de�ned topo-

graphic cortical maps [39].

It is also worth remembering that not all compo-

nents are localised, structurally individuated entities like

hearts and lungs: in small animals the functions of respi-

ration and circulation can be achieved by di�usion pro-

cesses. This does not imply that there are no entities |

stomata etc | that carry this function, but that they

form a distributed, functionally individuated, \compo-

nent" or subsystem; rather than a localised, structurally

indivuated, one. Similarly, componential-functional de-

composition in neural networks need not imply the exis-

tence of \grandmother" cells, or even of clearly delimited

modules. Something can play a well-de�ned functional

role with respect to other components even if it is not

topographically localised. For an intuition pump, think

of the geographically di�use functional components of

human societies, such as political organisations, classes,

companies etc. As was shown above, it is usually only

the most stereotyped behaviours that result in localised

functional modularisation; and even these do not work

in isolation. For example, although only a small number

of neurons are directly involved in the gill-withdrawal

reex of Aplysia, up to 300 others are simultaneously ac-

tivated, since siphon stimulation also causes many other

behaviours: mantle contraction, inking, mucus release,

postural changes, respiratory pumping etc. [2]

Functions Without Computations

It must be emphasised that a functional decomposition

is relative to a behaviour of the overall system [14]. This

is the crucial di�erence between this approach to func-

tional analysis, and the modular-functional analysis of

classical computationalism. Fodor [23] argues for the ex-

istence of modules that are the prior explanatory atoms

of all cognitive behaviour. Modules are general purpose,

they play the same role in all behaviour, and so have a

�xed function. However, the functional analysis given

above starts from a particular behaviour, and then asks

how it is achieved. Analysing di�erent behaviours may

reveal a di�erent functional decomposition with no com-

ponent playing the same role in each case. It is modu-

larity, rather than functional analysis per se that de�nes

a computationalist perspective.

When a single unit is described as representing the

presence of a target triangle, this is a description of how

a mechanism achieves a behaviour. Representation is

not what an entity is, but rather what it does in a be-

havioural context. Representation is not merely a cor-

relation between internal and external state that only

exists for an external observer, but a relational, func-

tional property between a mechanism and a particular

behaviour that it displays.

3 Functional Analysis and Dynamical

Systems Theory

What do we gain by a functional analysis of such simple

systems? After all, if a functional analysis is needed in

a simple case like the triangle-seeking robot, then there

seems no principled reason why it could not be applied

in even simpler cases. For example, the neural mecha-

nism of the Braitenberg light-seeking vehicle is actually

no more than a pair of crossed wires. However we could

describe it in functional terms as an input module (com-

prising the two sensors) that passes a representation of

the world (the state of the two wires) to the output mod-

ule (the motors).



assumption of classical computational psychology, that

cognition takes place in a mental \space" built from rep-

resentations of the world. The only di�erence is that the

rules for the manipulation of these representations are

essentially temporal. The weak form of DST therefore

stands in the same relation to computationalism as clas-

sical connectionism [16]: it shares an explanatory frame-

work, but uses more complicated rules.

The stronger form of DST therefore restricts state vari-

ables to be non-mental, i.e. physical, properties of the

system and its environment [4] [46]. This approach was

�rst used 50 years earlier by Ross Ashby [3]. In the case

of agents built from a neural network, the obvious choice

of state variables are the activation of single neurons or

neural masses [33][24]. However, this restriction has con-

sequences for how DST can be used.

DST is supposed to provide an explanation of how

cognitive behaviour is produced, rather than simply de-

scribing the dynamics of the internal mechanism. In or-

der to do this a DST model must therefore include not

just a whole agent but also its environment (though see

[34]). Let us assume for the moment that determining

the evolution equations for state variables that are in-

ternal to the agent is unproblematic. The environment

can then be handled in one of three ways. The �rst is

to ignore it by leaving any environmental impact on the

system as undetermined parameters: this is obviously no

answer for analysing the behaviour of whole agents. The

second, as advocated in [46] and [4], is to treat the envi-

ronment as a dynamical system in its own right, tightly

coupled to that of the agent. This, however, is a form

of Laplacean reductionism. Consider trying to produce

a DST model of a bird trying to land in a tree. The bird

must coordinate its body with a swaying branch using its

eyes, brain, and muscles. The obvious state variables for

the bird will include retinal cell inputs, the activations of

the neurons in the visuo-motor system, and muscle nerve

outputs. However the retinal inputs to the system will be

a�ected by the most trivial changes in the environment:

the wind catching a leaf and causing a shadow to move,

for instance. This perturbation of input will, in turn, al-

ter the trajectory in the phase space of the system. If we

want to know how the bird lands reliably despite the inci-

dental movement of so many factors in the environment,

then it seems as though we will have to model the tree in

as much detail as the nervous system of the bird. This

is impossible in practise, even if we agree with Laplace

that it may be possible in principle. The only case of a

full DST analysis of a whole agent-environment system

that I am aware of is [33], in which the environment is

completely static. In [4] the neural network controller for

a hexapod robot is modelled as a dynamical system, but

its environment is treated as the body that it controls

(the environment external to the body is again assumed

to be static), and only a localised 5-neuron subsystem

is analysed as such. (This is not meant to detract from

the great subtlety of the evolved design. The point is

that it is not possible to fully appreciate it from a purely

dynamical systems perspective.)

The only alternative for DST is to postulate features

of the phase space of the agent-environment system that

are immune to the incidental, un-modellable, changes to

state variables. This is the way in which Walter Freeman

uses DST to model oscillations in the olfactory bulb [25].

Two points should be noted about this model. The �rst

is that it is not an attempt to model a whole
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