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Abstract. 
 
Autonomous systems are the result of self-sustaining processes of constitution of 
an identity under precarious circumstances. They may transit through different 
modes of dynamical engagement with their environment, from committed 
ongoing coping to open susceptibility to external demands. This paper discusses 
these two statements and presents examples of models of autonomous behaviour 
using methods in evolutionary robotics. A model of an agent capable of issuing 
self-instructions demonstrates the fragility of modelling autonomy as a function 
rather than as a property of a system’s organization. An alternative model of 
behavioural preference based on homeostatic adaptation avoids this problem by 
establishing a mutual constraining between lower-level processes (neural 
dynamics and sensorimotor interaction) and higher-level metadynamics 
(experience-dependent, homeostatic triggering of local plasticity and re-
organization). The results of these models are lessons about how strong 
autonomy should be approached: neither as a function, nor as a matter of 
external vs. internal determination. 
 
Keywords: biological autonomy, modelling autonomous behaviour, evolutionary 
robotics, self-setting of goals, behavioural preference. 
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1. Introduction 
 
In this paper I would like to establish two important points about autonomy that 
stem from a careful analysis of the continuity between life and cognition, and a 
third point by implication. The two main messages I would like to establish 
about autonomy are: 1) autonomous systems always originate in self-sustaining 
processes of constitution of an identity under precarious circumstances and 2) 
such processes can be dynamically manifested in different modes of engaging 
with the world ranging from committed coping to open susceptibility. The 
implication of these two points will be that 3) current work in "autonomous" 
robotics based on ideas of automated synthesis of design (e.g., evolutionary 
robotics) and dynamical systems approaches to cognition, is still far from 
achieving or even modelling autonomy in the strong sense advocated here, but 
that this work may be at the same time the surest route to this goal. I will 
concentrate for the most part of the paper on discussing examples of recent work 
in evolutionary robotics. One case illustrates the insufficiency of thinking about 
autonomy in terms of functions and another example shows that at least some 
interesting aspects of the organization of autonomous behaviour can be 
modelled fruitfully once we take points 1 and 2 more seriously. Both cases, 
however, constitute “good” examples of the role of modelling in clarifying 
complex concepts such as autonomy. 
 
2. Why should autonomous systems generate their own identity? 
 
I will work under the assumption that autonomous systems, i.e., systems capable 
in some non-trivial sense of setting their own laws, exist, and that living systems 
provide the clearest, less controversial examples of such autonomy (even if it 
may still be possible to discuss autonomous systems that are non-living; or let's 
say, remain agnostic about the possibility). That autonomy is not an illusion is far 
from evident for Western thought. This is in fact because it is often suspected to 
be a purely ascriptional property – one that will simply vanish upon closer 
inspection. Autonomy remains such a slippery concept if examined under the 
magnifying glass of reductionist physicalism. If we are to avoid mysteries, an 
autonomous system must follow only the laws of physics, hence it cannot set its 
own laws, therefore they don't really exist, they're just convenient ways of 
talking. For Kant, in his 
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argument just too quickly takes sides in the conflict between two kinds of very 
real experiences: the experience of the physical world as regular and describable 
in terms of laws and the experience of our perceived teleology and autonomous 
behaviour in others and, most importantly, in ourselves. On what basis are two 
reliable and repeatable experiences to be discriminated as real or unreal? History 
tells us that this is a naive formulation and that conflict breeds novel 
understanding by dialectical synthesis rather than by decreeing a winner 
position. This is Hans Jonas's rebuttal of the Kantian lukewarm recognition of the 
importance, but not quite properly ontological status, of intrinsic teleology. We 
can know life because we ourselves are alive (Jonas, 1966; Weber & Varela, 2002; 
Di Paolo, 2005; Di Paolo, Rohde & De Jaegher, forthcoming).  
 
Let's just boldly state that living organisms are autonomous – they follow laws 
set up by their own activity. Fundamentally, they can only be autonomous by 
virtue of their self-generated identity as distinct entities. A system whose identity 
is fully specified by a designer and cannot, by means of its own actions, 
regenerate its own constitution, can only follow the laws contained in its design, 
no matter how plastic, adaptive, or life-like its performance. In order for a system 
to generate its own laws it must be able to build itself at some level of identity. If a 
system ‘has no say’ in defining its own organization, then it is condemned to 
follow an externally given design like a laid down railtrack. It may be endowed 
with ways of changing its behaviour depending on history, but at some level it 
will encounter an externally imposed functional (as opposed to physical) 
limitation to the extent to which it can change. This can only be avoided if the 
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of either the environment or internal sub-agential modules meant to represent 
theoretical constructs such as instincts or drives. And it is only made more 
radical by the connection between the constitutive and interactional aspects of 
autonomy that is the basis of the idea of sense-making (Varela 1997; Thompson, 
2007; Di Paolo, 2005), the bringing forth of a world of significance.  
 
3. A fable about the dynamics of everyday life 
 
When trying to understand autonomous behaviour it may be instructive to take a 
look at the ongoing cycles of activity in normal everyday life and how they are 
often very different from the performances that are studied in psychology, 
neuroscience, cognitive science and AI/robotics. Theur
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pathological action (obsessive repetition, moths attracted to the candle flame, 
etc.). 
 
What happens after self-extinguished coping? It is simply contrary to everyday 
experience to assume that new goals will immediately follow from the 
attainment or frustration of previous ones (we are of course not ignoring the 
possibility of hierarchical organization of tasks into sub-tasks in which case the 
next set of activities is generally well-defined, but this is not the only possibility). 
In fact, our experience tells us that there are moments of certain openness to the 
possibilities afforded by our situation (such openness can clearly be very 
different depending on the affective outcome of the previous coping task). While 
distractors were robustly ignored during
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Evolutionary robotics (ER) is still proving a useful and open-ended method for 
exploring this increasingly less constraining role of the designer that may be 
required to achieve strong artificial autonomy. ER hands in the task of filling in 
design specifications pertaining to mechanisms, morphology, structural and 
functional organization to an automatic process of artificial evolution (Harvey et 
al. 1997, Nolfi & Floreano, 2000). Thus, instead of designing a robot that must 
explore the environment but should go to the green light when the battery is 
down, one can attempt to design a robot that more generally must keep the 
battery up during its explorations, or more implicitly, a robot that explores 
indefinitely. In principle, there may be different ways of achieving this broader 
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latching onto the significant interactions with the environment that will lead to 
achieving the desired goal efficiently and robustly. Finding a target cannot 
depend on the initial position of the agent, or the initial internal state, and so 
these parameters must be randomized from trial to trial to ascertain a level of 
stability of the solutions that evolve. But this very basic element of the ER 
methodology may play against the design of autonomous agents, at least if we 
consider the different dynamical regimes of activity described in the previous 
section. If evolution is to produce stable and robust dynamical controllers, it will 
avoid being strongly influenced by irrelevant environmental factors, but at the 
same time it will avoid internal sources of instability.  Hence it will produce 
robust coping, but not necessarily dynamical states of openness after coping 
activity is self-extinguished. That's why goal-seeking evolved robots tend to keep 
around their targets like moths attracted to a flame. They behaviour is almost 
pathological. The lack of self-extinction of behaviour should perhaps be taken as 
a sign of bad design (cf., work by Ian Macinnes on functional circles and practical 
ways of dealing with this problem, e.g., Macinnes and Di Paolo, 2006). So 
evolving autonomous robots will have to overcome this problem by either 
selecting the right building blocks, or including sensorimotor interactions and 
internal elements that inevitably will sometimes lead to transitions between low 
and high dimensionality in the dynamical flow as suggested in the previous 
section. 
 
5. A "self-instructing" agent. How not to model autonomy. 
 
Let us consider an example of an agent capable of generating its own instructions 
and following them. In some loose sense of autonomy (but not necessarily in the 
operational sense that we have offered above), this agent would be setting up its 
own goals. I present the following agent as a computer-enhanced thought 
experiment but also as a demonstration of why certain tempting methodologies 
for designing autonomous agents are conceptually flawed. In the next section, I 
will show an agent that is not yet fully autonomous but which demonstrates 
what I consider a better methodology. Both these models demonstrate how we 
can learn about autonomy without yet producing proper instantiations. 
 
In his well-known discrimination experiments, Randall Beer (2003) has shown 
how minimally cognitive behaviour can be 1) easily modelled and analysed 
using a combined evolutionary robotics/dynamical systems approach, and 2) 
how such models, albeit minimal, demonstrate interesting general principles and 
provide extendable vocabularies to discuss cognition in dynamical terms. The 
basic discrimination experiment consists of a visually-guided agent moving in 1 
dimension (left-right) whose task is to catch a falling object if it is a circle and 
avoid it if it is a diamond; the agent receives input from an array of linear visual 
sensors (rays that activate when intersected by the falling object) and this input is 
fed into a recurrent, symmetrical CTRNN controlleri. The output of the network 
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determines the velocity of the agent,  (Beer, 2003). Although dynamical analysis 
has shown that agents use the absolute radius of the falling shape to perform 
their discrimination, extensions of the setup to shapes of variable size results in 
agents capable of discrimination based on shape, (Di Paolo and Harvey, 2003). 
 
Let us consider a variant of this model. An agent that performs a circle/diamond 
shape discrimination, but that depending on an external binary signal its choice 
of which object to catch can be altered. So if the external signal (ES) is set to 0, the 
agent is a circle-catcher and if the signal is 1, the agent is a diamond-catcher. 
 
The setup is otherwise similar to Beer’s experiments, with the difference that 
sensors are binary (to increase sensory ambiguity and encourage more active 
solutions). And additionally, a focus control is added to the array of sensor rays. 
This is an effector neuron that simply opens and closes the angle of the sensors 
rays in a linear way. Interestingly, this extra level of sensory control is important 
to evolve agents capable of changing their behaviour depending on the external 
instruction. Figure 2 shows the average fitness of 10 independent runs with and 
without focus control. The best focus controlling agents can perform either circle-
catching or diamond-catching on demand for a relatively large range of sizes, 
using ambiguous noisy sensors with success rates of over 85%.  
 

[Figure 2 about here] 
 
These agents have now a well-defined signal that alters the goal they pursuit. 
Couldn’t such a signal be somehow provided internally? Ideally, could such a 
signal be generated in a way that is jointly dependent on internal and 
environmental factors? Exclusive dependence on either class of factors would not 
generate an agent that we would be happy to call autonomous as we could 
suspect that the agent is following the instructions that either are external to it or 
is blindly taking no account of its situation. Autonomy, even in an intuitive 
sense, is ruled out by either of these two conditions. Why? Because both 
conditions negate the idea of self-determination. The case of constant reactive 
response to the environment is clear. No system that is simply driven externally 
can ever be autonomous. But, and this is less intuitive, the same may be said 
about a system that is “driven internally”. If a subset of a system exerts control 
on the whole, then the situation remains that of a system that is controlled, not 
self-determined. If a system is controlled only by internal dynamics making it 
blind to the current environmental situation (what sometimes in mathematical 
terms is indeed called an “autonomous” system due to the lack of parametrical 
and time-dependent driving), the system has nothing to determine itself against. 
It simply endures in its dynamics because it’s closed to environmental 
challengesii.  
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capable of generating a stable on-off signal depending on internal state and 
environmental circumstances. There are many options. One would be a central 
pattern generator (CPG) that oscillates with a certain frequency in the absence of 
input currents and settles into either a high or a low value stable attractor in the 
presence of input. Such a circuit can easily be hand-designed using a fully 
connected 2-node CTRNN (Beer, 1995) and is shown in figure 3. The CPG 
receives input from the visual sensors. Depending on the phase value of the 
oscillation orbit, the presence of input will drive the CPG to one of two possible 
stable fixed points (new intersections of nullclinesiii). For one of the nodes the 
two fixed points correspond to high and to low firing rates respectively. This 
node is then connected to ES in the pre-evolved discriminator network. The 
agent will now produce behaviours such as those shown in figure 4. Upon 
repeated presentation of a circle the agent will sometimes approach it and other 
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implemented for each node in the CTRNN neurocontroller as 2 bands within the 
range of firing rates (figure 5): a low-firing and a high-firing homeostatic region 
(to reduce bias, the type of each region, A or B, is assigned randomly at the 
beginning of the evolutionary run). 

[Figure 5 about here] 
 
The idea is that if the system holds two separate (fixed) high-dimensional boxes 
in the space of neural dynamics which are associated with performing different 
behaviours, a preference could be formed by the dynamical transitions that select 
which box the trajectories go into and stay in. This provides a first requirement 
for talking about preference, that of durability (bottom-up construction of 
stability). Once a behaviour is formed, due to the stability in a box, the system 
keeps doing the behaviour while ignoring other behavioural possibilities. It is 
like a spontaneous top-down constraint that regulates the sensorimotor flow. 
However, some disturbances might eventually cause a breakdown of the stability 
and then another behaviour can be reconstructed though the homeostatic 
adaptive mechanisms. Since by design, the system has another region of high 
stability, it will be possible in the right circumstances to switch into it and then 
start enacting the other behavioural option. In this way, behaviour can switch 
due to the corresponding transitions between two boxes. One can expect to see 
both spontaneous and externally induced transitions from the viewpoint of the 
top-down and bottom-up construction or destruction of durable but 
impermanent dynamical modes. Here we find a second requirement, that of the 
possibility of transformation, or change in preference. 
 
The evolved agents show interesting behaviour when two lights (A and B) are 
presented simultaneously in a random position. They always “chose” to go to 
one of the two lights, they never stay in the middle or move away from them. 
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while approaching light A, the lights are swapped in position to see whether the 
agent changes its behaviour. The result depends on the time of the swapping. If 
the agent is far enough, it alters its trajectory after the swap and moves towards 
the new position for light A. If the swap is made later, when the agent is close to 
light B, the agent switches to finish its approach to light B, as if its presence was 
now too strong a stimulus to ignore. This and similar tests indicate that a 
preference is maintained or changed as a combined effect of environmental 
factors and endogenous dynamics.  
 
In an attempt to measure the development of a preference, agents are tested at 
different times during the sequence of presentations shown in figure 6 in order to 
find out if their choice would have been the same at that point in time if the 
position of the lights had been different. The distinction between a spontaneous 
or externally driven “decision” is made operational by observing the agent’s 
behaviours in different situations departing from a same initial state. If the agent 
“decided” to go to one of the lights endogenously, its behaviour must be robust 
without depending too much on environmental factors. On the contrary, if the 
selection were externally driven it would be affected by changes to 
environmental factors such as light positions (as if the agent were not 
“committed” enough).  
 
Figure 7 shows the results. Each plot indicates in shades of grey the final 
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history of interactions would be a much better way of modelling autonomy. In 
addition, there is only a contingent link between internal “requirements” and 
external interaction. Light is made relevant to the agent by a selective pressure 
and it is linked to an internal condition to be satisfied (homeostasis) also by 
evolutionary history. Organisms present much tighter double causal links 
between internal needs (e.g., metabolism) and sensorimotor interactions (e.g., 
foraging). This is again something that should be improved for a closer approach 
to behavioural autonomy, (Di Paolo, 2003). 
 
7. Conclusions 
 
What do we learn from these models? The two examples of modelling aspects of 
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Figure 5. Left: schematic representation of two high-dimensional homeostatic 
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Figure 3. Top left: CTRNN neurocontroller for self-instructing agent. ES: external 
signal, F: focus effector, ML and MR, motor neurons driving left and right 
respectively. Top right: nullclines corresponding to fully connected 2-node CPG 
in the absence of input. Bottom left and right: nullclines in the presence of input, 
trajectory ends in a low firing fixed point for neuron 1 (left) or in a high firing 
fixed point (right) depending on phase. Output of neuron 1 is fed into ES. 
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Figure 4. Repeated presentation of falling circles (left) and diamonds (right) for 
self-instructing agent. Plots show the horizontal displacement of the agent over 
time and the position where the objects fall. Agent sometimes approaches the 
target, other times avoids it. 
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Figure 5. Left: schematic representation of two high-dimensional homeostatic 
regions in the space of neural firing rates. Right: how the homeostatic regions are 
implemented for each node in the network. The plot indicates the plasticity 
function (pj) as a function of neural firing rate (zj). Changes to incoming weights 
are calculated as a function of pre- and post-synaptic activation multiplied by pj : 

wji = ji zi pj (zj) where ji is an evolved constant. Whenever the post-synaptic 
firing rate is in one of the two flat regions, pj = 0 and local plasticity is inhibited. 
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Figure 6. Left: Final distance to each light at the end of trials on serial 
presentations of 100 pairs of lights. Right: Proportion of neurons that have stayed 
within the homeostatic region for each light in correspondence to trials on the 
left.  Adapted from Iizuka and Di Paolo (forthcoming). 
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Figure 7. Light preference of the agent corresponding to the states of (a) 20, (b) 
25, (c) 50 or (d) 95 in Fig. 6, against different light positions. Horizontal and 
vertical axes indicate the initial angles of lights A and B relative to the agent’s 
orientation respectively. The positions of lights whose difference is less than /2 
are removed in order to better determine which light the agent is approaching. 
The dark grey circles show that the agent approaches light A. The light grey 
circles correspond to light B and black shows the agent does not approach either 
of lights. Adapted from Iizuka and Di Paolo (forthcoming). 
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Notes 
                                                
i
 The state equation for a CTRNN neuron is:  
 
!i (dyi/dt) = –vi + j wjizj  + Ii,  
 
where i indexes all neurons, j indexes all links inputting to neuron i (which may 
be an empty set), !i
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